RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260583
Artificial Ribozyme-Based Regulators of Gene Expression
Publikationsverlauf
Publikationsdatum:
26. Mai 2011 (online)

Abstract
The development of RNA-based switches of gene expression is summarized. Most switches are based on the Schistosoma mansonii hammerhead ribozyme (HHR), a self-cleaving RNA sequence that is inserted into an mRNA. Control of HHR self-cleavage is achieved by the attachment of an aptamer domain to the HHR scaffold. External addition of a small-molecule ligand regulates catalytic activity of the ribozyme and hence gene expression. These so-called aptazymes are suited to control several classes of RNA. In addition to mRNA, we have incorporated artificial RNA switches into tRNA as well as the bacterial 16S rRNA. In addition, the presented switches should be widely applicable as demonstrated by experiments in bacteria, yeast, and mammals.
1 Introduction
2 Ribozymes in Nature
3 Ribozymes as Parts for Artificial mRNA Switches
4 Regulation of Further RNA Classes
5 Conclusion
Key words
ribonucleic acid - aptamer - riboswitch - hammerhead - RNA-ligand interaction
- 1
Winkler W.Nahvi A.Breaker RR. Nature (London) 2002, 419: 952 - 2a
Barrick JE.Corbino KA.Winkler WC.Nahvi A.Mandal M.Collins J.Lee M.Roth A.Sudarsan N.Jona I.Wickiser JK.Breaker RR. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 6421Reference Ris Wihthout Link - 2b
Winkler WC.Breaker RR. Annu. Rev. Microbiol. 2005, 59: 487Reference Ris Wihthout Link - 2c
Schwalbe H.Buck J.Furtig B.Noeske J.Wohnert J. Angew. Chem. Int. Ed. 2007, 46: 1212Reference Ris Wihthout Link - 3
Werstuck G.Green MR. Science 1998, 282: 296 - 4a
Tuerk C.Gold L. Science 1990, 249: 505Reference Ris Wihthout Link - 4b
Ellington AD.Szostak JW. Nature (London) 1990, 346: 818Reference Ris Wihthout Link - 4c
Klug SJ.Famulok M. Mol. Biol. Rep. 1994, 20: 97Reference Ris Wihthout Link - 5
Wieland M.Hartig JS. Nat. Protoc. 2009, 4: 1632 - 6a
Wieland M.Benz A.Klauser B.Hartig JS. Angew. Chem. Int. Ed. 2009, 48: 2715Reference Ris Wihthout Link - 6b
Wieland M.Gfell M.Hartig JS. RNA 2009, 15: 968Reference Ris Wihthout Link - 6c
Wieland M.Hartig JS. Angew. Chem. Int. Ed. 2008, 47: 2604Reference Ris Wihthout Link - 7
Guerrier-Takada C.Altman S. Science 1984, 223: 285 - 8
Bass BL.Cech TR. Nature (London) 1984, 308: 820 - 9
Nissen P.Hansen J.Ban N.Moore PB.Steitz TA. Science 2000, 289: 920 - 10a
Winkler WC.Nahvi A.Roth A.Collins JA.Breaker RR. Nature (London) 2004, 428: 281Reference Ris Wihthout Link - 10b
Collins JA.Irnov I.Baker S.Winkler WC. Genes Dev. 2007, 21: 3356Reference Ris Wihthout Link - 11
Lee ER.Baker JL.Weinberg Z.Sudarsan N.Breaker RR. Science 2010, 329: 845 - 12a
Stahley MR.Strobel SA. Curr. Opin. Struct. Biol. 2006, 16: 319Reference Ris Wihthout Link - 12b
Adams PL.Stahley MR.Kosek AB.Wang J.Strobel SA. Nature (London) 2004, 430: 45Reference Ris Wihthout Link - 13
Thompson KM.Syrett HA.Knudsen SM.Ellington AD. BMC Biotechnology 2002, 2: 21 - 14
Fedor MJ. Annu. Rev. Biophys. 2009, 38: 271 - 15
Blount KF.Uhlenbeck OC. Biochem. Soc. Trans. 2002, 30: 1119 - 16
Seehafer C.Kalweit A.Steger G.Graf S.Hammann C. RNA 2011, 17: 21 - 17a
Canny MD.Jucker FM.Kellogg E.Khvorova A.Jayasena SD.Pardi A. J. Am. Chem. Soc. 2004, 126: 10848Reference Ris Wihthout Link - 17b
Khvorova A.Lescoute A.Westhof E.Jayasena SD. Nat. Struct. Biol. 2003, 10: 708Reference Ris Wihthout Link - 17c
Martick M.Scott WG. Cell 2006, 126: 309Reference Ris Wihthout Link - 18
Martick M.Lee TS.York DM.Scott WG. Chem. Biol. 2008, 15: 332 - 19
Bartel DP.Unrau PJ. Trends Cell Biol. 1999, 9: M9 - 20
Ekland EH.Szostak JW.Bartel DP. Science 1995, 269: 364 - 21a
Zhang B.Cech TR. Chem. Biol. 1998, 5: 539Reference Ris Wihthout Link - 21b
Zhang B.Cech TR. Nature (London) 1997, 390: 96Reference Ris Wihthout Link - 22a
Lohse PA.Szostak JW. Nature (London) 1996, 381: 442Reference Ris Wihthout Link - 22b
Illangasekare M.Sanchez G.Nickles T.Yarus M. Science 1995, 267: 643Reference Ris Wihthout Link - 22c
Jenne A.Famulok M. Chem. Biol. 1998, 5: 23Reference Ris Wihthout Link - 23
Lorsch JR.Szostak JW. Nature (London) 1994, 371: 31 - 24a
Seelig B.Jaschke A. Chem. Biol. 1999, 6: 167Reference Ris Wihthout Link - 24b
Serganov A.Keiper S.Malinina L.Tereshko V.Skripkin E.Hobartner C.Polonskaia A.Phan AT.Wombacher R.Micura R.Dauter Z.Jaschke A.Patel DJ. Nat. Struct. Mol. Biol. 2005, 12: 218Reference Ris Wihthout Link - 25
Uhlenbeck OC. Nature (London) 1987, 328: 596 - 26a
Vaish NK.Kore AR.Eckstein F. Nucleic Acids Res. 1998, 26: 5237Reference Ris Wihthout Link - 26b
Bramlage B.Luzi E.Eckstein F. Trends Biotechnol. 1998, 16: 434Reference Ris Wihthout Link - 27
Yen L.Svendsen J.Lee JS.Gray JT.Magnier M.Baba T.D’Amato RJ.Mulligan RC. Nature (London) 2004, 431: 471 - 28
Yen L.Magnier M.Weissleder R.Stockwell BR.Mulligan RC. RNA 2006, 12: 797 - 29a
Soukup GA.Breaker RR. Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 3584Reference Ris Wihthout Link - 29b
Piganeau N.Jenne A.Thuillier V.Famulok M. Angew. Chem. Int. Ed. 2001, 40: 3503Reference Ris Wihthout Link - 29c
Hartig JS.Najafi-Shoushtari SH.Grune I.Yan A.Ellington AD.Famulok M. ,Reference Ris Wihthout Link - 29d
Link KH.Guo L.Ames TD.Yen L.Mulligan RC.Breaker RR. Biol. Chem. 2007, 388: 779Reference Ris Wihthout Link - 30
Win MN.Smolke CD. Proc. Natl. Acad. Sci. U.S.A. 2007, 104: 14283 - 31
Chen YY.Jensen MC.Smolke CD. Proc. Natl. Acad. Sci. U.S.A. 2010, 107: 8531 - 32
Schlax PJ.Worhunsky DJ. Mol. Microbiol. 2003, 48: 1157 - 33
Wieland M.Hartig JS. ChemBioChem 2008, 9: 1873 - 34
Chen X.Denison L.Levy M.Ellington AD. RNA 2009, 15: 2035 - 35
Win MN.Smolke CD. Science 2008, 322: 456 - 36a
Ogawa A.Maeda M. Nucleic Acids Symp. Ser. 2007, 389Reference Ris Wihthout Link - 36b
Ogawa A.Maeda M. Bioorg. Med. Chem. Lett. 2007, 17: 3156Reference Ris Wihthout Link - 37
Ogawa A.Maeda M. ChemBioChem 2008, 9: 206 - 38a
Penchovsky R.Breaker RR. Nat. Biotechnol. 2005, 23: 1424Reference Ris Wihthout Link - 38b
Jose AM.Soukup GA.Breaker RR. Nucleic Acids Res. 2001, 29: 1631Reference Ris Wihthout Link - 39a
Suess B.Fink B.Berens C.Stentz R.Hillen W. Nucleic Acids Res. 2004, 32: 1610Reference Ris Wihthout Link - 39b
Lynch SA.Desai SK.Sajja HK.Gallivan JP. Chem. Biol. 2007, 14: 173Reference Ris Wihthout Link - 40
Topp S.Gallivan JP. J. Am. Chem. Soc. 2007, 129: 6807 - 41a
Kazanov MD.Vitreschak AG.Gelfand MS. BMC Genomics 2007, 8: 347Reference Ris Wihthout Link - 41b
Rentmeister A.Mayer G.Kuhn N.Famulok M. Biol. Chem. 2008, 389: 127Reference Ris Wihthout Link - 42
Wachter A.Tunc-Ozdemir M.Grove BC.Green PJ.Shintani DK.Breaker RR. Plant Cell 2007, 19: 3437 - 43
Cheah MT.Wachter A.Sudarsan N.Breaker RR. Nature (London) 2007, 447: 497 - 44
Settembre E.Begley TP.Ealick SE. Curr. Opin. Struct. Biol. 2003, 13: 739 - 45
Auslander S.Ketzer P.Hartig JS. Mol. Biosyst. 2010, 6: 807 - 46
Berens C.Hillen W. Eur. J. Biochem. 2003, 270: 3109 - 47
Ogawa A.Maeda M. ChemBioChem 2008, 9: 2204 - 48
Berschneider B.Wieland M.Rubini M.Hartig JS. Angew. Chem. Int. Ed. 2009, 48: 7564 - 49
Hopper AK.Phizicky EM. Genes Dev. 2003, 17: 162 - 50
Wieland M.Berschneider B.Erlacher MD.Hartig JS. Chem. Biol. 2010, 17: 236 - 51a
Schluenzen F.Tocilj A.Zarivach R.Harms J.Gluehmann M.Janell D.Bashan A.Bartels H.Agmon I.Franceschi F.Yonath A. Cell 2000, 102: 615Reference Ris Wihthout Link - 51b
Wimberly BT.Brodersen DE.Clemons WM.Morgan-Warren RJ.Carter AP.Vonrhein C.Hartsch T.Ramakrishnan V. Nature (London) 2000, 407: 327Reference Ris Wihthout Link - 52
Mello CC.Conte D. Nature (London) 2004, 431: 338 - 53
Zeng Y.Cullen BR. J. Biol. Chem. 2005, 280: 27595 - 54
Dorsett Y.Tuschl T. Nat. Rev. Drug Discov. 2004, 3: 318 - 55a
An CI.Trinh VB.Yokobayashi Y. RNA 2006, 12: 710Reference Ris Wihthout Link - 55b
Tuleuova N.An CI.Ramanculov E.Revzin A.Yokobayashi Y. Biochem. Biophys. Res. Commun. 2008, 376: 169Reference Ris Wihthout Link - 56
Kumar D.An CI.Yokobayashi Y. J. Am. Chem. Soc. 2009, 131: 13906