Synthesis 2011(17): 2724-2732  
DOI: 10.1055/s-0030-1260104
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart ˙ New York

Oligonucleotide Conjugates by Means of Copper-Free Click Chemistry - Expanding the Repertoire of Strained Cyclooctyne Phosphoramidites

Pieter van Delft, Evert van Schie, Nico J. Meeuwenoord, Herman S. Overkleeft, Gijsbert A. van der Marel*, Dmitri V. Filippov*
Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
Fax: +31(71)5274307; e-Mail: filippov@chem.leidenuniv.nl; e-Mail: marel_g@chem.leidenuniv.nl;
Further Information

Publication History

Received 7 April 2011
Publication Date:
08 July 2011 (eFirst)

Abstract

A set of four phosphoramidite building blocks containing a strained dibenzocyclooctyne moiety is reported, including one example equipped with a cleavable disulfide linker. Application of these amidites in solid-phase oligonucleotide synthesis yields either 5′- or 3′-cyclooctyne-modified nucleic acids. The strained cyclooctyne-bearing oligonucleotides are used in rapid and clean conjugation reactions with azide-containing (bio)molecules.

    References

  • 1 Chiu T.-C. Huang C.-C. Sensors  2009,  9:  10356 
  • 2 Endo M. Sugiyama H. ChemBioChem  2009,  10:  2420 
  • 3 Kwak M. Herrmann A. Angew. Chem. Int. Ed.  2010,  49:  8574 
  • 4 Alemdaroglu FE. Herrmann A. Org. Biomol. Chem.  2007,  5:  1311 
  • 5 Stephenson ML. Zamecnik PC. Proc. Natl. Acad. Sci. U.S.A.  1978,  75:  285 
  • 6 Fire A. Xu S. Montgomery MK. Kostas SA. Driver SE. Mello CC. Nature  1998,  391:  806 
  • 7 Opalinska JB. Gewirtz AM. Nat. Rev. Drug Discovery  2002,  1:  503 
  • 8 Dorsett Y. Tuschl T. Nat. Rev. Drug Discovery  2004,  3:  318 
  • 9 Alvarez-Salas LM. Curr. Top. Med. Chem.  2008,  8:  1379 
  • 10 Koppelhus U. Nielsen PE. Adv. Drug Delivery Rev.  2003,  55:  267 
  • 11 Braasch DA. Corey DR. Biochemistry  2002,  41:  4503 
  • 12 Whitehead KA. Langer R. Anderson DG. Nat. Rev. Drug Discovery  2009,  8:  129 
  • 13 Astakhova IV. Korshun VA. Jahn K. Kjems J. Wengel J. Bioconjugate Chem.  2008,  19:  1995 
  • 14 Lönnberg H. Bioconjugate Chem.  2009,  20:  1065 ; and references cited therein
  • 15 Marlin F. Simon P. Saison-Behmoaras T. Giovannangeli C. ChemBioChem  2010,  11:  1493 
  • 16 van Delft P. Meeuwenoord NJ. Hoogendoorn S. Dinkelaar J. Overkleeft HS. van der Marel GA. Filippov DV. Org. Lett.  2010,  12:  5486 
  • 17 Jayaprakash KN. Peng CG. Butler D. Varghese JP. Maier MA. Rajeev KG. Manoharan M. Org. Lett.  2010,  12:  5410 
  • 18 Ning X. Guo J. Wolfert MA. Boons G.-J. Angew. Chem. Int. Ed.  2008,  47:  2253 
  • 19 Jung S. Lee SH. Mok HH. Chung J. Park TG. J. Controlled Release  2010,  144:  306 
  • 20 Ghosh P. Dullea R. Fischer JE. Turi TG. Sarver RW. Zhang C. Basu K. Das SK. Poland BW. BMC Genomics  2009,  10 (Suppl. 1):  S17 
  • 21 Elbashir SM. Harborth J. Lendeckel W. Yalcin A. Weber K. Tuschl T. Nature  2001,  411:  494 
  • 22 Li Y. Zhang Y. Huang Z. Cao X. Gao K. Can. J. Chem.  2004,  82:  622 
  • 23 Dinkelaar J. Codée JDC. van den Bos LJ. Overkleeft HS. van der Marel GA. J. Org. Chem.  2007,  72:  5737