Synlett 2010(20): 3115-3116  
DOI: 10.1055/s-0030-1259048
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Potassium Hexacyanoferrate(II)

Jun-Tao Hou*
The College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050016, P. R. of China
e-Mail: juntaohou@gmail.com;
Further Information

Publication History

Publication Date:
17 November 2010 (online)

Introduction

Potassium hexacyanoferrate(II) has received considerable attention as an environmentally benign cyanaide source for the synthesis of a variety of important aryl nitriles. K4[Fe(CN)6)] is non-toxic {the LD50 of K4[Fe(CN)6] is lower than that for NaCl} and even used in food industry for metal precipitation. It has also been used as anti-agglutinating auxiliary for table salt (NaCl). It is soluble in ­water without decomposition even on addition of hydrochloric acid. [¹] In addition to its nontoxicity, cheapness, and easy handling, it allows for improved catalyst productivity and substrate scope. [²] The lower basicity and nucleophilicity of the hexacyanoferrate(II) anion compared to the free cyanide ion may help to prevent side reactions. [³] It has been extensively used as highly efficient cyanation reagent in the synthesis of benzonitriles [4-¹7] and (oligo)phenothiazinyl nitriles. [¹8] It has also reported to be used as the cyanide source for cyanation of aroyl chlorides, [¹9] heteroaryl halides, [²0] aryl perfluorooctylsulfonates [²¹] and aryl triflates. [²²] It has been employed in the oxidation of N-phenyl-2,5-diarylamino-1,4-benzoquinone imines to 2-(p-tolylamino)-5-(p-tolyl)phenazin-3-one. [²³]

K4[Fe(CN)6)] is commercially available on a ton scale. It can be readily prepared by the reaction of hydrogen ferrocyanide and potassium hydroxide.

    References

  • 1a Schareina T. Zapf A. Beller M. J. Organomet. Chem.  2004,  689:  4576 
  • 1b Schareina T. Zapf A. Beller M. Chem. Commun.  2004,  1388 
  • 2 Schareina T. Jackstell R. Schulz T. Zapf A. Cotté A. Gotta M. Beller M. Adv. Synth. Catal.  2009,  351:  643 
  • 3 Schareina T. Zapf A. Cotté A. Müller N. Beller M. Synthesis  2008,  3351 
  • 4 Ren Y. Liu Z. Zhao S. Tian X. Wang J. Yin W. He S. Catal. Commun.  2009,  768 
  • 5 Schareina T. Zapf A. Mägerlein W. Müller N. Beller M. Chem. Eur. J.  2007,  13:  6249 
  • 6 Zhu Y.-Z. Cai C. Eur. J. Org. Chem.  2007,  2401 
  • 7 Chen G. Weng J. Zheng Z. Zhu X. Cai Y. Cai J. Wan Y. Eur. J. Org. Chem.  2008,  3524 
  • 8 Zhu Y.-Z. Cai C. J. Chem. Res.  2007,  484 
  • 9 Weissman SA. Zewge D. Chen C. J. Org. Chem.  2005,  70:  1508 
  • 10 Cheng Y.-N. Duan Z. Li T. Wu YJ. Lett. Org. Chem.  2007,  4:  352 
  • 11 Grossman O. Gelman D. Org. Lett.  2006,  8:  1189 
  • 12 Schareina T. Zapf A. Mägerlein W. Müller N. Beller M. Tetrahedron Lett.  2007,  48:  1087 
  • 13 Cheng Y.-N. Duan Z. Li T. Wu YJ. Synlett  2007,  543 
  • 14 Polshettiwar V. Hesemann P. Moreau JJE. Tetrahedron  2007,  63:  6784 
  • 15 Nandurkar NS. Bhanage BM. Tetrahedron  2008,  64:  3655 
  • 16 Schareina T. Zapf A. Beller M. Tetrahedron Lett.  2005,  46:  2585 
  • 17 Velmathi S. Leadbeater NE. Tetrahedron Lett.  2008,  49:  4693 
  • 18 Franz AW. Popa LN. Müller TJJ. Tetrahedron Lett.  2008,  49:  3330 
  • 19 Li Z. Shi S. Yang J. Synlett  2006,  2495 
  • 20 Schareina T. Zapf A. Mägerlein W. Müller N. Beller M. Synlett  2007,  555 
  • 21 Zhu Y.-Z. Cai C. Aust. J. Chem.  2008,  61:  581 
  • 22 Zhu Y.-Z. Cai C. Synth. Commun.  2008,  38:  2753 
  • 23 Burmistrov KS. Glukh AI. Toropin NV. Russ. J. Org. Chem.  2005,  41:  944 
  • 24 Li L.-H. Pan Z.-L. Duan X.-H. Liang Y.-M. Synlett  2006,  2094 
  • 25 Cheng Y.-N. Duan Z. Yu L. Li Z. Zhu Y. Wu YJ. Org. Lett.  2008,  10:  901 
  • 26 Pinto A. Jia Y. Neuville L. Zhu J. Chem. Eur. J.  2007,  13:  961 
  • 27 Zhu Y.-Z. Ren Y.-M. Cai C. Helv. Chim. Acta  2009,  92:  171 
  • 28 Mariampillai B. Alliot J. Li M. Lautens M. J. Am. Chem. Soc.  2007,  129:  15372