Abstract
A practical cyanation of aroyl chlorides with 0.2 equivalent of non-toxic cyanide
source, K4 [Fe(CN)6 ], 3 mol% AgI, 4 mol% PEG-400, and 3 mol% KI as the catalyst system is described.
The reactions were performed in DMF at room temperature and provided the corresponding
aroyl cyanides in 64-89% yield, typically in less than ten hours.
Key words
green chemistry - catalysis - synthesis - phase-transfer catalysis - cyanation
References and Notes
<A NAME="RW11106ST-1A">1a </A>
Saikia P.
Laskar DD.
Prajapati D.
Sandhu JS.
Tetrahedron Lett.
2002,
43:
7525
<A NAME="RW11106ST-1B">1b </A>
Baek HS.
Lee SJ.
Yoo BW.
Ko JJ.
Kim SH.
Kim JH.
Tetrahedron Lett.
2000,
41:
8097
<A NAME="RW11106ST-1C">1c </A>
Yoo BW.
Kim DY.
Choi JW.
Hwang SK.
Choi KI.
Kim JH.
Bull. Korean Chem. Soc.
2003,
24:
263
<A NAME="RW11106ST-2">2 </A>
Gohain M.
Gogoi BJ.
Prajapati D.
Sandhu JS.
New J. Chem.
2003,
27:
1038
<A NAME="RW11106ST-3">3 </A>
Yoo BW.
Hwang SK.
Kim DY.
Choi JW.
Ko JJ.
Choi KI.
Kim JH.
Tetrahedron Lett.
2002,
43:
4813
<A NAME="RW11106ST-4">4 </A>
Duplais C.
Bures F.
Sapountzis I.
Korn TJ.
Cahiez G.
Knochel P.
Angew. Chem. Int. Ed.
2004,
43:
2968
<A NAME="RW11106ST-5">5 </A>
Yoo BW.
Lee SJ.
Choi KH.
Keum SR.
Ko JJ.
Choi KI.
Kim JH.
Tetrahedron Lett.
2001,
42:
7287
<A NAME="RW11106ST-6">6 </A>
Veronese AC.
Callegari R.
Basato M.
Valle G.
J. Chem. Soc., Perkin Trans. 1
1994,
1779
<A NAME="RW11106ST-7">7 </A>
Park YS.
Han JH.
Yoo B.
Choi KI.
Kim JH.
Yoon CM.
Yoo BW.
Bull. Korean Chem. Soc.
2005,
26:
878
<A NAME="RW11106ST-8">8 </A>
Okimoto M.
Chiba T.
Synthesis
1996,
1188
<A NAME="RW11106ST-9">9 </A>
Zhang W.
Shi M.
Org. Biomol. Chem.
2006,
4:
1671
<A NAME="RW11106ST-10">10 </A>
Watahiki T.
Ohba S.
Oriyama T.
Org. Lett.
2003,
5:
2679
<A NAME="RW11106ST-11">11 </A>
Nemoto H.
Ibaragi T.
Bando M.
Kido M.
Shibuya M.
Tetrahedron Lett.
1999,
40:
1319
<A NAME="RW11106ST-12">12 </A>
Zhou S.
Yan B.
Liu Y.
J. Org. Chem.
2005,
70:
4006
<A NAME="RW11106ST-13">13 </A>
Liu YH.
Yan B.
Organometallics
2006,
25:
544
<A NAME="RW11106ST-14">14 </A>
Demko ZP.
Sharpless KB.
Angew. Chem. Int. Ed.
2002,
41:
2113
<A NAME="RW11106ST-15">15 </A>
Zhuo JC.
Wyler H.
Helv. Chim. Acta
1993,
76:
1916
<A NAME="RW11106ST-16">16 </A>
Connors R.
Tran E.
Durst T.
Can. J. Chem.
1996,
74:
221
<A NAME="RW11106ST-17">17 </A>
Kuwabara H.
Ushigoe Y.
Nojima M.
J. Chem. Soc., Perkin Trans. 1
1996,
871
<A NAME="RW11106ST-18">18 </A>
Hunig S.
Schaller R.
Angew. Chem., Int. Ed. Engl.
1982,
21:
36
<A NAME="RW11106ST-19">19 </A>
Koenig KE.
Weber WP.
Tetrahedron Lett.
1974,
2275
<A NAME="RW11106ST-20">20 </A>
Oakwood TS.
Weisgerber CA.
Org. Synth., Coll. Vol. 3
Wiley;
New York:
1955.
p.112
<A NAME="RW11106ST-21A">21a </A>
Tanaka M.
Koyanagi M.
Synthesis
1981,
973
<A NAME="RW11106ST-21B">21b </A>
Cao YQ.
Du YF.
Chen BH.
Li JT.
Synth. Commun.
2004,
34:
2951
<A NAME="RW11106ST-21C">21c </A>
Ando T.
Kawate T.
Yamawaki J.
Hanafusa T.
Synthesis
1983,
637
<A NAME="RW11106ST-22">22 </A>
Tanaka M.
Tetrahedron Lett.
1980,
21:
2959
<A NAME="RW11106ST-23A">23a </A>
Olah GA.
Arvanaghi M.
Prakash GKS.
Synthesis
1983,
636
<A NAME="RW11106ST-23B">23b </A>
Harle H.
Jochims JC.
Chem. Ber.
1986,
119:
1400
<A NAME="RW11106ST-24">24 </A>
Choudary BM.
Reddy PN.
J. Mol. Catal. A: Chem.
1996,
112:
385
<A NAME="RW11106ST-25A">25a </A>
Schareina T.
Zapf A.
Beller M.
Tetrahedron Lett.
2005,
46:
2585
<A NAME="RW11106ST-25B">25b </A>
Schareina T.
Zapf A.
Beller M.
J. Organomet. Chem.
2004,
689:
4576
<A NAME="RW11106ST-25C">25c </A>
Schareina T.
Zapf A.
Beller M.
Chem. Commun.
2004,
1388
<A NAME="RW11106ST-25D">25d </A>
Weissman SA.
Zewge D.
Chen C.
J. Org. Chem.
2005,
70:
1508
<A NAME="RW11106ST-25E">25e </A>
Grossman O.
Gelman D.
Org. Lett.
2006,
8:
1189
<A NAME="RW11106ST-26">26 </A>
General Procedure: A mixture of AgI (0.1 g, 0.45 mmol), PEG400 (0.24 g, 0.6 mmol), KI (0.08 g, 0.45
mmol), and K4 [Fe(CN)6 ] (1.15 g, 3 mmol) (dried at 80 °C under vacuum for 24 h and finely powdered prior
to use) in anhyd DMF (10 mL) was first stirred for 10 min, then aroyl chloride (15
mmol) was added. The mixture was stirred for the appropriate time indicated in Table
[2 ]
at r.t. The progress of the reaction was monitored by TLC (PE-EtOAc, 5:1). Then CH2 Cl2 (20 mL) was added. The suspension was filtered to remove the solid, the filtrate
was washed with cold H2 O (3 × 30 mL), and dried over anhyd MgSO4 . Then the solvent was removed by distillation and the residue was crystallized from
hexane to give the product. 2-Chlorobenzoyl cyanide: IR (KBr): 2089 (C≡N), 1776 cm-1 (C=O). 1 H NMR (CDCl3 , 400 MHz): δ = 7.29-7.81 (m, 4 H, Ph). Anal. Calcd for C8 H4 ClNO: C, 58.03; H, 2.44; N, 8.46. Found: C, 57.91; H, 2.50; N, 8.39. 3-Chlorobenzoyl
cyanide: IR (KBr): 1964 (C≡N), 1793 cm-1 (C=O). 1 H NMR (CDCl3 , 400 MHz): δ = 7.22-7.78 (m, 4 H, Ph). Anal. Calcd for C8 H4 ClNO: C, 58.03; H, 2.44; N, 8.46. Found: C, 58.11; H, 2.49; N, 8.53. 2-Furoyl cyanide:
IR (KBr): 2067 (C≡N), 1758 cm-1 (C=O). 1 H NMR (CDCl3 , 400 MHz): δ = 6.70-7.69 (m, 3 H, Furan). Anal. Calcd. for C6 H3 NO2 : C, 59.51; H, 2.50; N, 11.57. Found: C, 59.70; H, 2.43; N, 11.49. 2-Thiophenecarbonyl
cyanide: IR (KBr): 2052 (C≡N), 1766 (C=O). 1 H NMR (CDCl3 , 400 MHz): δ = 7.10-7.71 (m, 3 H, Thiophene). Anal. Calcd for C6 H3 NOS: C, 52.54; H, 2.20; N, 11.66. Found: C, 52.42; H, 2.30; N, 11.72.