Abstract
In spite of the tremendous growth experienced by the field of
asymmetric organocatalysis in the last decade, it is important to
realize that we are still far away from having explored all of the
possible pathways in organocatalysis ‘territory’;
the application of the organocatalysis concept can still provide
new catalysts and reactions for a variety of asymmetric organic
transformations. To exemplify this assertion, we summarize the research
performed in our laboratory over the past two years which has led
to the development of new enantioselective approaches to organometallic
compounds, to the desymmetrization of prochiral ketones, to functionalized
cyclopropanes and piperidines, to fluorinated compounds, and to
quaternary α-amino acids, among others.
1 Introduction
2 Enamine Chemistry
2.1 Ferrocenes: Unprecedented Reactants in Organocatalysis
2.1.1 Organocatalytic Mannich Reactions
2.1.2 Planar Chirality
2.2 Aldol Reaction: Proline-Thiourea Catalysis
2.2.1 Desymmetrization of 4-Substituted Cyclohexanones
2.2.2 Unraveling the Role of the Thiourea Co-catalyst
3 Iminium Chemistry
3.1 Tandem Reactions
3.1.1 Highly Enantioselective Synthesis of Piperidines
3.1.2 Cyclopropanation
3.2 Michael Additions
3.2.1 Anthrones
3.2.2 Fluoromalonates
3.2.3 Sulfones: An Interesting New Tool in Organocatalysis
3.2.3.1 Fluoro-Substituted Sulfones
3.2.3.2 Alkyl Sulfones
3.2.4 Oxindoles
4 Oxazolones: Intriguing Reactants in Organocatalyzed Processes
4.1 Asymmetric Michael Addition of Oxazolones to Nitrostyrenes
4.2 Asymmetric Michael Addition of Oxazolones to Vinyl Sulfones
5 Summary and Outlook
Key words
amines - asymmetric catalysis - tandem reactions - imines - nucleophilic additions
References
<A NAME="RA56210ST-1A">1a </A>
Noyori R.
Asymmetric
Catalysis in Organic Synthesis
Wiley;
New
York:
1994.
<A NAME="RA56210ST-1B">1b </A>
Comprehensive
Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
<A NAME="RA56210ST-1C">1c </A>
Catalytic
Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
New York:
2000.
<A NAME="RA56210ST-1D">1d </A>
Transition
Metals for Organic Synthesis
2nd ed.:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RA56210ST-2A">2a </A>
Biocatalysts for Fine Chemicals Synthesis
Roberts
SM.
Wiley-VCH;
New
York:
1999.
<A NAME="RA56210ST-2B">2b </A>
Enzyme Catalysis
in Organic Synthesis
2nd ed.:
Drauz K.
Waldmann H.
Wiley-VCH;
Weinheim:
2002.
<A NAME="RA56210ST-2C">2c </A>
Bommarius AS.
Riebel BR.
Biocatalysis
Wiley-VCH;
Weinheim:
2004.
For authoritative reviews on the
topic of asymmetric organocatalysis, see:
<A NAME="RA56210ST-3A">3a </A>
Dalko PI.
Moisan L.
Angew. Chem.
Int. Ed.
2001,
40:
3726
<A NAME="RA56210ST-3B">3b </A>
List B.
Synlett
2001,
1675
<A NAME="RA56210ST-3C">3c </A>
List B.
Tetrahedron
2002,
58:
2481
<A NAME="RA56210ST-3D">3d </A>
Dalko
PI.
Moisan L.
Angew. Chem.
Int. Ed.
2004,
43:
5138
<A NAME="RA56210ST-3E">3e </A>
Berkessel A.
Gröger H.
Asymmetric
Organocatalysis
Wiley-VCH;
Weinheim:
2005.
<A NAME="RA56210ST-3F">3f </A>
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
<A NAME="RA56210ST-3G">3g </A>
Lelais G.
MacMillan
DWC.
Aldrichimica
Acta
2006,
39:
79
<A NAME="RA56210ST-3H">3h </A>
Bressy C.
Dalko PI.
Enantioselective
Organocatalysis
Wiley-VCH;
Weinheim:
2007.
<A NAME="RA56210ST-3I">3i </A>
Guillena G.
Nájera C.
Ramón DJ.
Tetrahedron: Asymmetry
2007,
18:
2249
<A NAME="RA56210ST-3J">3j </A>
Ting A.
Schaus SE.
Eur. J. Org. Chem.
2007,
5797
<A NAME="RA56210ST-3K">3k </A>
Verkade JMM.
Lieke JC.v.H.
Quadflieg PJLM.
Rutjes
FPJT.
Chem.
Soc. Rev.
2008,
37:
29
<A NAME="RA56210ST-3L">3l </A>
Dondoni A.
Massi A.
Angew. Chem. Int. Ed.
2008,
47:
4638
<A NAME="RA56210ST-3M">3m </A>
Melchiorre P.
Marigo M.
Carlone A.
Bartoli G.
Angew. Chem. Int. Ed.
2008,
47:
6138
<A NAME="RA56210ST-3N">3n </A>
Bertelsen S.
Jørgensen KA.
Chem.
Soc. Rev.
2009,
38:
2178
<A NAME="RA56210ST-3O">3o </A>
Bartoli G.
Melchiorre P.
Synlett
2008,
1759
<A NAME="RA56210ST-3P">3p </A>
Connon SJ.
Org. Biomol. Chem.
2007,
5:
3407
<A NAME="RA56210ST-3Q">3q </A>
Yu X.
Wang W.
Chem. Asian J.
2008,
3:
516
<A NAME="RA56210ST-3R">3r </A>
Gruttadauria M.
Giacalone F.
Noto R.
Adv.
Synth. Catal.
2009,
351:
33
<A NAME="RA56210ST-3S">3s </A>
Peng F.
Shao Z.
J. Mol. Catal. A: Chem.
2008,
285:
1
<A NAME="RA56210ST-3T">3t </A>
Werner T.
Adv.
Synth. Catal.
2009,
351:
1469
<A NAME="RA56210ST-3U">3u </A>
Paradowska J.
Stodulski M.
Mlynarski J.
Angew.
Chem. Int. Ed.
2009,
48:
4288
<A NAME="RA56210ST-3V">3v </A>
Toma S.
Meciarová M.
Sebesta R.
Eur.
J. Org. Chem.
2009,
321
<A NAME="RA56210ST-3W">3w </A>
Enders D.
Wang C.
Liebich JX.
Chem.
Eur. J.
2009,
15:
11058
<A NAME="RA56210ST-3X">3x </A>
Liu X.
Lin L.
Feng X.
Chem.
Commun. (Cambridge)
2009,
6145
For reviews on organocatalytic conjugate additions, see:
<A NAME="RA56210ST-3Y">3y </A>
Mosse S.
Alexakis A.
Chem. Commun. (Cambridge)
2007,
3123
<A NAME="RA56210ST-3Z">3z </A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
(aa)
Vicario JL.
Badía D.
Carillo L.
Synthesis
2007,
2065
(ab)
Almasi D.
Alonso DA.
Nájera C.
Tetrahedron:
Asymmetry
2007,
18:
299
<A NAME="RA56210ST-4">4 </A>
List B.
Lerner RA.
Barbas CF.
J.
Am. Chem. Soc.
2000,
122:
2395
<A NAME="RA56210ST-5">5 </A>
Ahrendt KA.
Borths CJ.
MacMillan DWC.
J. Am. Chem. Soc.
2000,
122:
4243
<A NAME="RA56210ST-6">6 </A> For an authoritative review, see:
Connon SJ.
Chem. Commun. (Cambridge)
2008,
2499
<A NAME="RA56210ST-7">7 </A> For an authoritative review, see:
Ooi T.
Maruoka K.
Angew.
Chem. Int. Ed.
2007,
43:
4222
<A NAME="RA56210ST-8">8 </A> For an authoritative review, see:
Enders D.
Niemeier O.
Henseler A.
Chem. Rev.
2007,
107:
5606
<A NAME="RA56210ST-9A">9a </A>
Catasús M.
Moyano A.
Aggarwal VK.
Tetrahedron Lett.
2002,
43:
3475
<A NAME="RA56210ST-9B">9b </A>
Catasús M.
Bueno A.
Moyano A.
Maestro MA.
Mahía J.
J. Organomet. Chem.
2002,
642:
212
<A NAME="RA56210ST-9C">9c </A>
Moreno RM.
Bueno A.
Moyano A.
J. Organomet.
Chem.
2002,
660:
62
<A NAME="RA56210ST-9D">9d </A>
Bueno A.
Moreno RM.
Moyano A.
Tetrahedron:
Asymmetry
2005,
16:
1763
<A NAME="RA56210ST-9E">9e </A>
Moyano A.
Rosol M.
Moreno RM.
López C.
Maestro MA.
Angew. Chem. Int. Ed.
2005,
44:
1865
<A NAME="RA56210ST-9F">9f </A>
Rosol M.
Moyano A.
J. Organomet. Chem.
2005,
690:
2291
<A NAME="RA56210ST-9G">9g </A>
Moreno RM.
Bueno A.
Moyano A.
J.
Org. Chem.
2006,
71:
2528
<A NAME="RA56210ST-9H">9h </A>
Moreno RM.
Rosol M.
Moyano A.
Tetrahedron:
Asymmetry
2006,
17:
1089
<A NAME="RA56210ST-9I">9i </A>
Moreno RM.
Moyano A.
Tetrahedron:
Asymmetry
2006,
17:
1104
<A NAME="RA56210ST-9J">9j </A>
Bueno A.
Rosol M.
García J.
Moyano A.
Adv. Synth. Catal.
2006,
348:
2590
<A NAME="RA56210ST-9K">9k </A>
García J.
Moyano A.
Rosol M.
Tetrahedron
2007,
63:
1907
<A NAME="RA56210ST-9L">9l </A>
Moreno RM.
Catasús M.
López C.
Moyano A.
Eur. J. Org.
Chem.
2008,
2388
<A NAME="RA56210ST-9M">9m </A>
Omedes M.
Gómez-Sal P.
Andriés J.
Moyano A.
Tetrahedron
2008,
64:
3953
<A NAME="RA56210ST-9N">9n </A>
Moyano A.
Rios R.
Synlett
2009,
1863
<A NAME="RA56210ST-10">10 </A>
Valero G.
Balaguer A.-N.
Moyano A.
Rios R.
Tetrahedron Lett.
2008,
49:
6559
<A NAME="RA56210ST-11">11 </A>
List B.
J.
Am. Chem. Soc.
2000,
122:
9336
<A NAME="RA56210ST-12">12 </A> As far as we are aware, the only
reference concerning β-amino-β-ferrocenyl carbonyl
derivatives describes the low-yield (15%) formation
of rac -4-ferrocenyl-4-(2-naphthylamino)butanone
in the reaction between N -(2-naphthyl)ferrocenylmethanimine
and acetone catalyzed by p -toluenesulfonic
acid, see:
Kalenikov EA.
Zh.
Obshch. Khim.
1977,
43:
628
<A NAME="RA56210ST-13">13 </A>
List B.
Pojarliev P.
Biller WT.
Martin HJ.
J. Am. Chem. Soc.
2002,
124:
827
<A NAME="RA56210ST-14">14 </A>
Bahmanyar S.
Houk KN.
Org. Lett.
2003,
5:
1249
<A NAME="RA56210ST-15">15 </A>
When, under the same reaction conditions,
the N -(4-methoxyphenyl)imine derivative
of benzaldehyde was reacted with butanone, a 1:1.2 mixture of diastereomers (linear/branched)
was obtained.
<A NAME="RA56210ST-16">16 </A>
Alba A.-N.
Gómez-Sal P.
Rios R.
Moyano R.
Tetrahedron: Asymmetry
2009,
20:
1314
<A NAME="RA56210ST-17A">17a </A>
Bahmanyar S.
Houk KN.
Martin HJ.
List B.
J.
Am. Chem. Soc.
2003,
125:
2475
<A NAME="RA56210ST-17B">17b </A>
List B.
Hoang L.
Martin HJ.
Proc.
Natl. Acad. Sci. U.S.A.
2004,
101:
5839
<A NAME="RA56210ST-17C">17c </A>
Zotova N.
Franzke A.
Armstrong A.
Blackmond
DG.
J. Am.
Chem. Soc.
2007,
129:
15100
<A NAME="RA56210ST-18A">18a </A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J.
Am. Chem. Soc.
2001,
123:
5260
<A NAME="RA56210ST-18B">18b </A>
Reyes E.
Córdova A.
Tetrahedron Lett.
2005,
46:
6605
<A NAME="RA56210ST-18C">18c </A>
Seebach D.
Beck
AK.
Badine DM.
Limbach M.
Eschenmoser A.
Treasurywala AM.
Hobi R.
Prikoszovich W.
Linder B.
Helv. Chim. Acta
2007,
90:
425
<A NAME="RA56210ST-18D">18d </A>
Zotova N.
Franzke A.
Armstrong A.
Blackmond DG.
J. Am. Chem. Soc.
2007,
129:
15100
<A NAME="RA56210ST-19A">19a </A>
Torii H.
Nakadai M.
Ishihara K.
Sato S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
1983
<A NAME="RA56210ST-19B">19b </A>
Zou W.
Ibrahem I.
Dziedzic P.
Sundén H.
Córdova A.
Chem. Commun. (Cambridge)
2005,
4946
<A NAME="RA56210ST-19C">19c </A>
Alza E.
Cambeiro XC.
Jimeno C.
Pericàs MA.
Org. Lett.
2007,
9:
3717
<A NAME="RA56210ST-19D">19d </A>
Almasi D.
Alonso DA.
Nájera C.
Adv. Synth. Catal.
2008,
350:
2467
<A NAME="RA56210ST-19E">19e </A>
Font D.
Salayero S.
Bastero A.
Jimeno C.
Pericàs MA.
Org. Lett.
2008,
10:
337
<A NAME="RA56210ST-20">20 </A>
Pihko PM.
Laurikainen KM.
Usano A.
Nyberg AI.
Kaavi JA.
Tetrahedron
2006,
62:
317
<A NAME="RA56210ST-21A">21a </A>
Zhou Y.
Shan Z.
J.
Org. Chem.
2006,
71:
9510
<A NAME="RA56210ST-21B">21b </A> For an excellent review
about the use of supramolecular interactions to improve organocatalysts,
see:
Companyó X.
Viciano M.
Rios R.
Mini-Rev. Org.
Chem.
2010,
7:
1
<A NAME="RA56210ST-22">22 </A>
Schreiner PR.
Wittkopp A.
Org. Lett.
2002,
4:
217
<A NAME="RA56210ST-23">23 </A>
Reis O.
Eymur S.
Reis B.
Demir AS.
Chem. Commun. (Cambridge)
2009,
1088 ; Please note that the absolute configurations
of the aldol adducts appearing in this paper are systematically
opposite to the actual ones
<A NAME="RA56210ST-24">24 </A>
Malerich JP.
Hagihara K.
Rawal VH.
J.
Am. Chem. Soc.
2008,
130:
14416
<A NAME="RA56210ST-25">25 </A>
Reetz MT.
Brunner B.
Schneider T.
Schultz F.
Clouthier CM.
Kayser MM.
Angew. Chem. Int.
Ed.
2004,
43:
4075
<A NAME="RA56210ST-26">26 </A>
Mita T.
Fujimori I.
Wanda R.
Kanai M.
Shibasaki M.
J.
Am. Chem. Soc.
2005,
127:
11252
<A NAME="RA56210ST-27A">27a </A>
Ho S.
Rho HS.
Lee JW.
Lee JE.
Youk SH.
Chin J.
Song CE.
Angew. Chem. Int. Ed.
2008,
47:
7872
<A NAME="RA56210ST-27B">27b </A>
Peschiulli A.
Gun’ko YK.
Connon SJ.
J. Org. Chem.
2008,
73:
2454
<A NAME="RA56210ST-27C">27c </A>
Peschiulli A.
Quigley C.
Tallon S.
Gun’ko YK.
Connon SJ.
J. Org. Chem.
2008,
73:
6409
<A NAME="RA56210ST-27D">27d </A>
Ramachary DB.
Barbas CF.
Org.
Lett.
2005,
7:
1577
<A NAME="RA56210ST-28A">28a </A>
Jiang J.
He L.
Luo SW.
Cun L.-F.
Gong L.-Z.
Chem. Commun. (Cambridge)
2007,
736
<A NAME="RA56210ST-28B">28b </A>
Jiang J.
He L.
Luo SW.
Cun L.-F.
Gong L.-Z.
Chem.
Commun. (Cambridge)
2008,
6609
<A NAME="RA56210ST-29">29 </A>
Rodriguez B.
Bruckmann A.
Bolm C.
Chem.
Eur. J.
2007,
13:
4710
<A NAME="RA56210ST-30">30 </A>
Companyó X.
Valero G.
Crovetto L.
Moyano A.
Rios R.
Chem.
Eur. J.
2009,
15:
6564
For a recent authoritative review
on nonlinear effects in asymmetric catalysis which includes a section
on nonlinear effects through partial solubility of the catalyst,
see:
<A NAME="RA56210ST-31A">31a </A>
Satyanarayana T.
Abraham S.
Kagan HB.
Angew. Chem. Int. Ed.
2009,
48:
456
For a short review on the solubility behavior of proline
and its implications in organocatalysis, see:
<A NAME="RA56210ST-31B">31b </A>
Kellogg RM.
Angew. Chem. Int. Ed.
2007,
46:
494
<A NAME="RA56210ST-32">32 </A>
Hayashi Y.
Matsuzawa M.
Yamaguchi J.
Yonehara S.
Matsumoto Y.
Shoji M.
Hashizume D.
Koshino H.
Angew. Chem. Int. Ed.
2006,
45:
4593
<A NAME="RA56210ST-33A">33a </A>
Klussmann M.
Iwamura H.
Matthew SP.
Wells DH.
Pandya U.
Armstrong A.
Blackmond DG.
Nature (London)
2006,
441:
621
<A NAME="RA56210ST-33B">33b </A>
Klussmann M.
Izumi T.
White AJP.
Armstrong A.
Blackmond DG.
J.
Am. Chem. Soc.
2007,
129:
7657
<A NAME="RA56210ST-34">34 </A>
El-Hamdouni N.
Companyó X.
Rios R.
Moyano A.
Chem. Eur. J.
2010,
16:
1142
<A NAME="RA56210ST-35">35 </A>
Chen YK.
Costa AM.
Walsh PJ.
J.
Am. Chem. Soc.
2001,
123:
5378
<A NAME="RA56210ST-36">36 </A>
Bulman Page PC.
Allin SM.
Maddocks SJ.
Elsegood MRJ.
J.
Chem. Soc., Perkin Trans. 1
2002,
2827
<A NAME="RA56210ST-37">37 </A>
Seebach D.
Beck AK.
Badine DM.
Limbach M.
Eschenmoser A.
Treasurywala AM.
Hobi R.
Prikoszovich W.
Linder B.
Helv.
Chim. Acta
2007,
90:
425
<A NAME="RA56210ST-38">38 </A>
Isart C.
Burés J.
Vilarrasa J.
Tetrahedron
Lett.
2008,
49:
5414
<A NAME="RA56210ST-39">39 </A>
Alba A.-N.
Companyó X.
Viciano M.
Rios R.
Curr. Org. Chem.
2009,
13:
1432
<A NAME="RA56210ST-40A">40a </A>
Valero G.
Schimer J.
Cisarova I.
Vesely J.
Moyano A.
Rios R.
Tetrahedron
Lett.
2009,
50:
1943
<A NAME="RA56210ST-40B">40b </A> For an excellent review
about the synthesis of piperidine rings, see:
Companyó X.
Alba A.-N.
Rios R.
Targ.
Heterocycl. Syst.
2009,
13:
147
<A NAME="RA56210ST-41">41 </A>
Rios R.
Ibrahem I.
Vesely J.
Sundén H.
Córdova A.
Tetrahedron Lett.
2007,
48:
8695
<A NAME="RA56210ST-42">42 </A>
Brandau S.
Landa A.
Franzén J.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2006,
45:
4305
Rubidium and potassium salts of
proline have been used in the synthesis of piperidines, see:
<A NAME="RA56210ST-43A">43a </A>
De Ferra L,
Massardo P,
Piccolo O, and
Cignarella G. inventors; US 6444822.
For an excellent review of syntheses of paroxetine, see:
<A NAME="RA56210ST-43B">43b </A>
De Risi C.
Fanton G.
Pollini GP.
Trapella C.
Zanirato V.
Tetrahedron:
Asymmetry
2008,
19:
131
For recent syntheses of paroxetine, see:
<A NAME="RA56210ST-43C">43c </A>
Nemoto T.
Sakamoto T.
Fukuyama T.
Hamada Y.
Tetrahedron Lett.
2007,
48:
4977
<A NAME="RA56210ST-43D">43d </A>
Yamada S.
Jahan I.
Tetrahedron Lett.
2005,
46:
8673
<A NAME="RA56210ST-43E">43e </A>
Hynes PS.
Stupple PA.
Dixon DJ.
Org. Lett.
2008,
10:
1389
<A NAME="RA56210ST-43F">43f </A>
Pastre JC.
Correia CRD.
Org.
Lett.
2006,
8:
1657
<A NAME="RA56210ST-44A">44a </A>
Wessjohan WA.
Brandt W.
Thiemann T.
Chem. Rev.
2003,
103:
1625
<A NAME="RA56210ST-44B">44b </A>
Faust D.
Angew.
Chem. Int. Ed.
2001,
40:
2251
<A NAME="RA56210ST-45">45 </A> For an excellent review, see:
Pellisier H.
Tetrahedron
2008,
64:
7041
For selected examples of metal-catalyzed cyclopropanations,
see:
<A NAME="RA56210ST-46A">46a </A>
Charette AB.
Molinaro C.
Brochu C.
J. Am. Chem. Soc.
2001,
123:
12160
<A NAME="RA56210ST-46B">46b </A>
Davis HML.
Bruzinski PR.
Lake DH.
Kong N.
Fall M.
J. Am. Chem. Soc.
1996,
118:
6897
<A NAME="RA56210ST-46C">46c </A>
Rios R.
Liang J.
Lo M.-C.
Fu GC.
Chem. Commun. (Cambridge)
2000,
377
<A NAME="RA56210ST-46D">46d </A>
Evans DA.
Woerpel KA.
Hinman MM.
Faul MM.
J.
Am. Chem. Soc.
1991,
113:
726
<A NAME="RA56210ST-47A">47a </A>
Shitama H.
Katsuki T.
Angew.
Chem. Int. Ed.
2008,
47:
2450
<A NAME="RA56210ST-47B">47b </A>
Davies SG.
Ling KB.
Roberts PM.
Russell AJ.
Thomson JE.
Chem. Commun. (Cambridge)
2007,
4029
<A NAME="RA56210ST-47C">47c </A>
Song Z.
Lu T.
Hsung RP.
Al-Rashid ZF.
Ko C.
Tang Y.
Angew. Chem. Int. Ed.
2007,
46:
4069
<A NAME="RA56210ST-48A">48a </A>
Papageorgiou CD.
Cubillo de Dios MA.
Ley SV.
Gaunt MJ.
Angew. Chem. Int. Ed.
2004,
43:
4641
<A NAME="RA56210ST-48B">48b </A>
McCooey SH.
McCabe T.
Connon SJ.
J. Org. Chem.
2006,
71:
7494
<A NAME="RA56210ST-48C">48c </A>
Kojima S.
Suzuki M.
Watanabe A.
Ohkata K.
Tetrahedron Lett.
2006,
47:
9061
<A NAME="RA56210ST-48D">48d </A>
Johansson CCC.
Bremeyer N.
Ley SV.
Owen
DR.
Smith SC.
Gaunt MJ.
Angew.
Chem. Int. Ed.
2006,
45:
6024
<A NAME="RA56210ST-48E">48e </A>
Kunz RK.
MacMillan DWC.
J.
Am. Chem. Soc.
2006,
127:
3240
<A NAME="RA56210ST-49A">49a </A>
Ibrahem I.
Zhao G.-L.
Rios R.
Vesely J.
Sundén H.
Dziedzic P.
Córdova A.
Chem. Eur. J.
2008,
14:
7867
<A NAME="RA56210ST-49B">49b </A>
Rios R.
Sundén H.
Vesely J.
Zhao G.-L.
Dziedzic P.
Córdova A.
Adv. Synth. Catal.
2007,
349:
1028
<A NAME="RA56210ST-50">50 </A>
Xie H.
Zu L.
Li H.
Wang J.
Wang W.
J. Am. Chem. Soc.
2007,
128:
10886
<A NAME="RA56210ST-51">51 </A>
Companyó X.
Alba A.-N.
Cárdenas F.
Moyano A.
Rios R.
Eur.
J. Org. Chem.
2009,
3075
<A NAME="RA56210ST-52A">52a </A>
Koerner M.
Rickborn B.
J.
Org. Chem.
1991,
56:
1373
<A NAME="RA56210ST-52B">52b </A>
Koerner M.
Rickborn B.
J. Org. Chem.
1990,
55:
2662
<A NAME="RA56210ST-52C">52c </A>
Koerner M.
Rickborn B.
J. Org. Chem.
1989,
54:
6
<A NAME="RA56210ST-53">53 </A>
Shen J.
Nguyen TT.
Goh Y.-P.
Ye W.
Fu X.
Xu J.
Tan C.-H.
J. Am. Chem.
Soc.
2006,
128:
13692
<A NAME="RA56210ST-54">54 </A>
Baik W.
Yoon CH.
Koo S.
Kin H.
Kim J.
Kim J.
Hong S.
Bull. Korean
Chem. Soc.
2004,
25:
491
<A NAME="RA56210ST-55">55 </A>
Shi M.
Lei Z.-Y.
Zhao M.-X.
Shi J.-W.
Tetrahedron Lett.
2007,
48:
5743
<A NAME="RA56210ST-56">56 </A>
Alba A.-N.
Bravo N.
Moyano A.
Rios R.
Tetrahedron Lett.
2009,
50:
3067-3069
<A NAME="RA56210ST-57A">57a </A>
Vesely J.
Rios R.
Ibrahem I.
Zhao G.-L.
Eriksson L.
Córdova A.
Chem.
Eur. J.
2008,
14:
2693
<A NAME="RA56210ST-57B">57b </A>
Rios R.
Sundén H.
Ibrahem I.
Zhao G.-L.
Córdova A.
Tetrahedron
Lett.
2006,
47:
8679
<A NAME="RA56210ST-57C">57c </A>
Rios R.
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2007,
48:
2181
<A NAME="RA56210ST-57D">57d </A>
Rios R.
Ibrahem I.
Vesely J.
Zhao G.-L.
Córdova A.
Tetrahedron
Lett.
2007,
48:
5701
<A NAME="RA56210ST-57E">57e </A>
Rios R.
Vesely J.
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron
Lett.
2007,
48:
5835
<A NAME="RA56210ST-58A">58a </A>
Kirsch P.
Modern
Fluoroorganic Chemistry
Wiley-VCH;
Weinheim:
2004.
<A NAME="RA56210ST-58B">58b </A>
Organofluorine
Compounds in Medicinal Chemistry and Biomedical Applications
Filler R.
Kobayashim Y.
Yagupolskii LM.
Elsevier;
Amsterdam:
1993.
<A NAME="RA56210ST-58C">58c </A>
O’Hagan D.
Chem. Soc. Rev.
2008,
37:
308
For excellent reviews on the synthesis
of fluorine-containing compounds, see:
<A NAME="RA56210ST-59A">59a </A>
Prakash GKS.
Hu J.
Acc.
Chem. Res.
2007,
40:
921
<A NAME="RA56210ST-59B">59b </A>
Brunet VA.
O’Hagan D.
Angew. Chem.
Int. Ed.
2008,
47:
1179
<A NAME="RA56210ST-60A">60a </A>
Marigo M.
Fielenbach D.
Braunton A.
Kjaesgaard A.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2005,
44:
3703
<A NAME="RA56210ST-60B">60b </A>
Beeson TD.
MacMillan DWC.
J.
Am. Chem. Soc.
2005,
127:
8826
<A NAME="RA56210ST-60C">60c </A>
Steiner DD.
Mase N.
Barbas CF.
Angew. Chem. Int. Ed.
2005,
44:
3706
<A NAME="RA56210ST-61">61 </A>
Fukuzumi T.
Shibata N.
Sugiura M.
Yasui H.
Nakamura S.
Toru T.
Angew. Chem. Int. Ed.
2006,
45:
4973
<A NAME="RA56210ST-62A">62a </A>
Alba A.-N.
Companyó X.
Moyano A.
Rios R.
Chem. Eur.
J.
2009,
15:
7035
<A NAME="RA56210ST-62B">62b </A> For an excellent review
about the use of sulfones in organocatalysis, see:
Nekane A.-N.
Companyó X.
Rios R.
Chem. Soc. Rev.
2010,
39:
2018
<A NAME="RA56210ST-63">63 </A>
Nichols PJ.
DeMattei JA.
Barnett BR.
LeFur NA.
Chuang T.
Piscopio AD.
Koch K.
Org. Lett.
2006,
8:
1495
<A NAME="RA56210ST-64">64 </A>
Kim DY.
Kim SM.
Koh KO.
Mang JY.
Lee K.
Bull.
Korean Chem. Soc.
2003,
24:
1425
<A NAME="RA56210ST-65A">65a </A>
Li H.
Zhang S.
Yu C.
Song X.
Wang W.
Chem. Commun.
(Cambridge)
2009,
2136
<A NAME="RA56210ST-65B">65b </A>
Han X.
Luo J.
Lu Y.
Chem.
Commun. (Cambridge)
2009,
2044
<A NAME="RA56210ST-66">66 </A>
Companyó X.
Hejnová M.
Kamlar M.
Vesely J.
Moyano A.
Rios R.
Tetrahedron Lett.
2009,
50:
5021
<A NAME="RA56210ST-67">67 </A> Independently, Wang and co-workers
reported the same reaction on the same submission date, see:
Zhang S.
Zhang Y.
Ji Y.
Li H.
Wang W.
Chem.
Commun. (Cambridge)
2009,
4886
<A NAME="RA56210ST-68">68 </A>
Furukawa T.
Shibata N.
Mizuta S.
Nakamura S.
Toru T.
Shiro M.
Angew. Chem. Int. Ed.
2008,
47:
8051
<A NAME="RA56210ST-69">69 </A>
Bogevig A.
Juhl K.
Kumaragurubaran N.
Zhuang W.
Jørgensen KA.
Angew. Chem. Int. Ed.
2002,
41:
1790
<A NAME="RA56210ST-70">70 </A>
List B.
J.
Am. Chem. Soc.
2002,
124:
5656
<A NAME="RA56210ST-71">71 </A>
Ullah F.
Zhao G.-L.
Deiana L.
Zhu M.
Dziedzic P.
Ibrahem I.
Hammar P.
Sun J.
Córdova A.
Chem. Eur. J.
2009,
15:
10013
<A NAME="RA56210ST-72">72 </A>
Alba A.-N.
Companyó X.
Moyano A.
Rios R.
Chem. Eur. J.
2009,
15:
11095
<A NAME="RA56210ST-73">73 </A>
García Ruano JL.
Marcos V.
Alemán J.
Chem. Commun. (Cambridge)
2009,
4435
<A NAME="RA56210ST-74">74 </A>
Landa A.
Puente .
Santos JI.
Vera S.
Oiarbide M.
Palomo C.
Chem. Eur. J.
2009,
15:
11954
<A NAME="RA56210ST-75A">75a </A>
Ishmuratov GY.
Yakovleva MP.
Kharisov RY.
Tolstikov GA.
Russ. Chem. Rev. (Engl. Transl.)
1997,
66:
987
<A NAME="RA56210ST-75B">75b </A>
Mori K.
Eur.
J. Org. Chem.
1998,
1479
<A NAME="RA56210ST-75C">75c </A>
Zarbin PHG.
Villar JAFP.
Correa AG.
J.
Braz. Chem. Soc.
2007,
18:
1100
<A NAME="RA56210ST-76A">76a </A>
Wang T.-Z.
Pinard E.
Paquette LA.
J. Am. Chem. Soc.
1996,
118:
1309
<A NAME="RA56210ST-76B">76b </A>
Smith AB.
Kozmin SA.
Paone DV.
J. Am. Chem. Soc.
1999,
121:
7423
<A NAME="RA56210ST-76C">76c </A>
Boger DL.
Keim H.
Oberhauser B.
Schreiner EP.
Foster CA.
J. Am. Chem. So c.
1999,
121:
6197
<A NAME="RA56210ST-76D">76d </A>
Williams DR.
Nold AL.
Mullins RJ.
J. Org. Chem.
2004,
69:
5374
<A NAME="RA56210ST-76E">76e </A>
Taber DF.
Tian W.
J. Org. Chem.
2008,
73:
7560
<A NAME="RA56210ST-77">77 </A>
The
Chemistry of Fragrances
Pybus D.
Sell C.
Royal Society of Chemistry;
Cambridge:
1999.
For the use and synthesis of isotopically
labeled enantiomers, see:
<A NAME="RA56210ST-78A">78a </A>
Tanaka K.
Aberhart DJ.
Amster JI.
Jenkins EE.
Hsu C.-T.
J. Biol. Chem.
1980,
255:
7763
<A NAME="RA56210ST-78B">78b </A>
Shattuck JC.
Meinwald J.
Tetrahedron
Lett.
1997,
38:
8461
For reviews, see:
<A NAME="RA56210ST-79A">79a </A>
Corey EJ.
Guzman-Perez A.
Angew. Chem.
Int. Ed.
1998,
37:
388
<A NAME="RA56210ST-79B">79b </A>
Denissova I.
Barriault L.
Tetrahedron
2003,
59:
10105
<A NAME="RA56210ST-79C">79c </A>
Ramon DJ.
Yus M.
Curr. Org. Chem.
2004,
8:
149
<A NAME="RA56210ST-79D">79d </A>
Douglas CJ.
Overman LE.
Proc.
Natl. Acad. Sci. U.S.A.
2004,
101:
5363
<A NAME="RA56210ST-79E">79e </A>
Christoffers J.
Baro A.
Adv. Synth. Catal.
2005,
347:
1473
<A NAME="RA56210ST-79F">79f </A>
Trost BM.
Jiang C.
Synthesis
2006,
369
<A NAME="RA56210ST-79G">79g </A>
Cozzi PG.
Hilgraf R.
Zimmermann N.
Eur. J. Org. Chem.
2007,
5969
<A NAME="RA56210ST-79H">79h </A>
Bella M.
Gasperi T.
Synthesis
2009,
1583
For a monograph, see:
<A NAME="RA56210ST-79I">79i </A>
Quaternary Stereocenters:
Challenges and Solutions for Organic Synthesis
Christoffers J.
Baro A.
Wiley-VCH;
Weinheim:
2005.
For selected examples, see:
<A NAME="RA56210ST-80A">80a </A>
Hewawasam P.
Erway M.
Moon SL.
Knipe J.
Weiner H.
Boissard CG.
Post-Munson DJ.
Gao Q.
Huang S.
Gribkoff VK.
Meanwell NA.
J.
Med. Chem.
2002,
45:
1487
<A NAME="RA56210ST-80B">80b </A>
Tokunaga T.
Hume WE.
Umezone T.
Okazaki K.
Ueki Y.
Kumagai K.
Hourai S.
Nagamine J.
Seki HT.
Taiji M.
Noguchi H.
Nagata R.
Bioorg. Med. Chem. Lett.
2005,
15:
1789
<A NAME="RA56210ST-80C">80c </A>
Tokunaga T.
Hume WE.
Umezome T.
Okazaki K.
Ueki Y.
Kumagai K.
Hourai S.
Nagamine J.
Seki H.
Taiji M.
Noguchi H.
Nagata R.
J.
Med. Chem.
2001,
44:
4641
<A NAME="RA56210ST-80D">80d </A>
Ding K.
Lu Y.
Nikolovska-Coleska Z.
Qiu S.
Ding Y.
Gao W.
Stuckey J.
Krajewski K.
Roller PP.
Tomita Y.
Parrish DA.
Deschamps JR.
Wang S.
J.
Am. Chem. Soc.
2005,
127:
10130
For selected examples, see:
<A NAME="RA56210ST-81A">81a </A>
Wearing XZ.
Cook JM.
Org.
Lett.
2002,
4:
4237
<A NAME="RA56210ST-81B">81b </A>
Albrecht BK.
Williams
RM.
Org.
Lett.
2003,
5:
197
<A NAME="RA56210ST-81C">81c </A>
Malinkova HC.
Liebeskind LS.
Org.
Lett.
2000,
2:
4083
<A NAME="RA56210ST-81D">81d </A>
Nicolaou
KC.
Rao PB.
Hao J.
Reddy MV.
Rassias G.
Huang X.
Chen DY.-K.
Snyder SA.
Angew.
Chem. Int. Ed.
2003,
42:
1753
<A NAME="RA56210ST-82A">82a </A>
Taylor AM.
Altman RA.
Buchwald SL.
J.
Am. Chem. Soc.
2009,
131:
9900
<A NAME="RA56210ST-82B">82b </A>
Jiang K.
Peng J.
Cui
H.-L.
Chen Y.-C.
Chem. Commun. (Cambridge)
2009,
3955
<A NAME="RA56210ST-82C">82c </A>
Bui T.
Syed S.
Barbas CF.
J.
Am. Chem. Soc.
2009,
131:
8758
<A NAME="RA56210ST-83">83 </A>
Bravo N.
Mon I.
Companyó X.
Moyano A.
Rios R.
Tetrahedron
Lett.
2009,
50:
6432
<A NAME="RA56210ST-84">84 </A>
Galzerano P.
Bencivenni G.
Pesciaioli F.
Mazzanti A.
Giannichi B.
Sambri L.
Bartoli G.
Melchiorre P.
Chem. Eur. J.
2009,
15:
7846
<A NAME="RA56210ST-85">85 </A> For a recent review, see:
Mosey RA.
Fisk JS.
Tepe JJ.
Tetrahedron: Asymmetry
2008,
19:
2755
<A NAME="RA56210ST-86A">86a </A>
Liang J.
Ruble JC.
Fu GC.
J. Org. Chem.
1998,
63:
3154
<A NAME="RA56210ST-86B">86b </A>
Berkessel A.
Cleemann F.
Mukherkee S.
Mueller TN.
Lex J.
Angew.
Chem. Int. Ed.
2005,
44:
807
<A NAME="RA56210ST-86C">86c </A>
Berkessel A.
Mukherkee S.
Cleemann F.
Mueller
TN.
Lex J.
Chem.
Commun. (Cambridge)
2005,
1898
<A NAME="RA56210ST-86D">86d </A>
Berkessel A.
Mukherkee S.
Mueller TN.
Cleemann F.
Roland K.
Brandenburg M.
Neudoerfl JM.
Lex J.
Org. Biomol. Chem.
2006,
4:
4319
<A NAME="RA56210ST-86E">86e </A>
Trost BM.
Ariza X.
J. Am. Chem.
Soc.
1999,
121:
10727
<A NAME="RA56210ST-86F">86f </A>
Trost BM.
Dogra K.
J. Am. Chem.
Soc.
2002,
124:
7256
<A NAME="RA56210ST-86G">86g </A>
Trost
BM.
Jakel C.
Plietker B.
J. Am. Chem. Soc.
2003,
125:
4438
<A NAME="RA56210ST-87A">87a </A>
Steglich W.
Grüber P.
Höfle G.
König W.
Angew. Chem.
Int. Ed. Engl.
1971,
10:
653
<A NAME="RA56210ST-87B">87b </A>
Steglich W.
Gruber P.
Angew. Chem. Int. Ed. Engl.
1971,
10:
655
<A NAME="RA56210ST-88A">88a </A>
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
15051
<A NAME="RA56210ST-88B">88b </A>
Cabrera S.
Reyes E.
Alemán J.
Milelli A.
Kobbelgaard S.
Jørgensen KA.
J. Am.
Chem. Soc.
2008,
130:
12031
<A NAME="RA56210ST-89">89 </A>
Balaguer A.-N.
Companyó X.
Calvet T.
Font-Bardía M.
Moyano A.
Rios R.
Eur. J. Org. Chem.
2009,
199
<A NAME="RA56210ST-90">90 </A>
Ferrino SA.
Maldonado LA.
Synth. Commun.
1980,
10:
717
<A NAME="RA56210ST-91">91 </A>
Alemán J.
Milelli A.
Cabrera S.
Reyes E.
Jørgensen
KA.
Chem. Eur. J.
2008,
14:
10958
<A NAME="RA56210ST-92">92 </A>
Simpkins NS.
Sulphones in Organic Synthesis
Pergamon;
Oxford:
1993.
<A NAME="RA56210ST-93A">93a </A>
Mossé S.
Alexakis A.
Org.
Lett.
2005,
7:
4361
<A NAME="RA56210ST-93B">93b </A>
Sulzer-Mossé S.
Alexakis A.
Mareda J.
Bollot G.
Bernardinelli G.
Filinchuk Y.
Chem.
Eur. J.
2009,
15:
3204
<A NAME="RA56210ST-94">94 </A> For the asymmetric organocatalytic
addition of aldehydes and ketones to 1,2-bis(alkylsulfonyl)ethenes,
see:
Quintard A.
Alexakis A.
Chem.
Eur. J.
2009,
15:
11109
<A NAME="RA56210ST-95A">95a </A>
Zhu Q.
Lu Y.
Org.
Lett.
2008,
10:
4803
<A NAME="RA56210ST-95B">95b </A>
Landa A.
Maestro M.
Masdeu C.
Puente A.
Vera S.
Oiarbide M.
Palomo C.
Chem. Eur.
J.
2009,
15:
1562
<A NAME="RA56210ST-96">96 </A>
Alba A.-NR.
Companyó X.
Valero G.
Moyano A.
Rios R.
Chem.
Eur. J.
2009,
16:
5354
<A NAME="RA56210ST-97">97 </A>
Okino T.
Hoashi Y.
Takemoto Y.
J.
Am. Chem. Soc.
2003,
125:
12672
For reviews on the synthesis of
quaternary α-amino acids, see:
<A NAME="RA56210ST-98A">98a </A>
Cativiela C.
Díaz-de-Villegas MD.
Tetrahedron: Asymmetry
2000,
11:
645
<A NAME="RA56210ST-98B">98b </A>
Ohfune Y.
Shinada T.
Eur. J. Org. Chem.
2005,
5127
<A NAME="RA56210ST-98C">98c </A>
Cativiela C.
Díaz-de-Villegas MD.
Tetrahedron:
Asymmetry
2007,
18:
569
<A NAME="RA56210ST-98D">98d </A>
Vogt H.
Bräse S.
Org. Biomol. Chem.
2007,
5:
406
<A NAME="RA56210ST-99A">99a </A>
Venkatraman J.
Shankaramma SC.
Balaram P.
Chem. Rev.
2001,
101:
3131
<A NAME="RA56210ST-99B">99b </A>
Tanaka M.
Chem.
Pharm. Bull.
2007,
55:
349
<A NAME="RA56210ST-100A">100a </A>
Almond HR.
Manning DT.
Niemann C.
Biochemistry
1962,
1:
243
<A NAME="RA56210ST-100B">100b </A>
Koshla MC.
Stachowiak K.
Smeby RR.
Bumpus FM.
Piriou F.
Lintner K.
Fermandjian S.
Proc. Natl. Acad. Sci.
U.S.A. Biol.
1981,
78:
757
<A NAME="RA56210ST-100C">100c </A>
Polinelli S.
Broxterman QB.
Schoemaker HE.
Boesten WHJ.
Crisma M.
Valle G.
Toniolo C.
Kamphuis J.
Bioorg.
Med. Chem. Lett.
1992,
2:
453
<A NAME="RA56210ST-100D">100d </A>
O’Connor SJ.
Liu Z.
Synlett
2003,
2135