Synthesis 2010(11): 1905-1908  
DOI: 10.1055/s-0029-1218777
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart ˙ New York

Trifluoromethyl Derivatization of the Ganglioside, GM1

Zhao Liua, Krishna Kumar*a,b
a Department of Chemistry, Tufts University, Medford, MA 02155-5813, USA
Fax: +1(617)6273443; e-Mail: krishna.kumar@tufts.edu;
b Cancer Center, Tufts Medical Center, Boston, MA 02110-1533, USA
Further Information

Publication History

Received 17 March 2010
Publication Date:
05 May 2010 (eFirst)

Abstract

A practical synthetic route to a terminally trifluoromethylated analogue of the ganglioside GM1 is described. It is based on regioselective chemical manipulation of naturally occurring GM1 isolated from bovine brain. Lyso-GM1 obtained by simple chemical transformation was then simply acylated with the NHS ester of trifluorostearic acid. The ability to attach fluorinated acyl chains of different lengths to glycosphingolipids is expected to have broad applicability in chemical biology and mass spectral imaging of soft tissue.

    References

  • 1 Singer SJ. Nicolson GL. Science  1972,  175:  720 
  • 2 Brown DA. London E. Annu. Rev. Cell Dev. Biol.  1998,  14:  111 
  • 3 Simons K. Toomre D. Nat. Rev. Mol. Cell Biol.  2000,  1:  31 
  • 4 Lingwood D. Simons K. Science  2010,  327:  46 
  • 5 Munro S. Cell  2003,  115:  377 
  • 6 Hancock JF. Nat. Rev. Mol. Cell Biol.  2006,  7:  456 
  • 7 Meng H. Krishnaji ST. Beinborn M. Kumar K. J. Med. Chem.  2008,  51:  7303 
  • 8 Meng H. Kumar K. J. Am. Chem. Soc.  2007,  129:  15615 
  • 9 Tang Y. Ghirlanda G. Petka WA. Nakajima T. DeGrado WF. Tirrell DA. Angew. Chem. Int. Ed.  2001,  40:  1494 
  • 10 Tang Y. Ghirlanda G. Vaidehi N. Kua J. Mainz DT. Goddard WA. DeGrado WF. Tirrell DA. Biochemistry  2001,  40:  2790 
  • 11 Salwiczek M. Koksch B. ChemBioChem  2009,  10:  2867 
  • 12 Gottler LM. de la Salud-Bea R. Marsh ENG. Biochemistry  2008,  47:  4484 
  • 13 Buer BC. de la Salud-Bea R. Hashimi HMA. Marsh ENG. Biochemistry  2009,  48:  10810 
  • 14 Lee KH. Lee HY. Slutsky MM. Anderson JT. Marsh ENG. Biochemistry  2004,  43:  16277 
  • 15 Jackel C. Salwiczek M. Koksch B. Angew. Chem. Int. Ed.  2006,  45:  4198 
  • 16 Chiu HP. Suzuki Y. Gullickson D. Ahmad R. Kokona B. Fairman R. Cheng RP. J. Am. Chem. Soc.  2006,  128:  15556 
  • 17 Zheng H. Comeforo K. Gao JM. J. Am. Chem. Soc.  2009,  131:  18 
  • 18 Niemz A. Tirrell DA. J. Am. Chem. Soc.  2001,  123:  7407 
  • 19 Naarmann N. Bilgicer B. Meng H. Kumar K. Steinem C. Angew. Chem. Int. Ed.  2006,  45:  2588 
  • 20 Bilgiçer B. Kumar K. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  15324 
  • 21a Bilgiçer B. Xing X. Kumar K. J. Am. Chem. Soc.  2001,  123:  11815 
  • 21b Bilgiçer B. Kumar K. J. Chem. Educ.  2003,  80:  1275 
  • 21c Bilgiçer B. Kumar K. Tetrahedron  2002,  58:  4105 
  • 22 Bilgiçer B. Fichera A. Kumar K. J. Am. Chem. Soc.  2001,  123:  4393 
  • 23a Yoder NC. Yüksel D. Dafik L. Kumar K. Curr. Opin. Chem. Biol.  2006,  10:  576 
  • 23b Yoder NC. Kumar K. Chem. Soc. Rev.  2002,  31:  335 
  • 24 Dafik L. d’Alarcao M. Kumar K. Bioorg. Med. Chem. Lett.  2008,  18:  5945 
  • 25a Dafik L. Kalsani V. Leung AKLL. Kumar K.
    J. Am. Chem. Soc.  2009,  131:  12091 
  • 25b Yoder NC. Kalsani V. Schuy S. Vogel R. Janshoff A. Kumar K.
    J. Am. Chem. Soc.  2007,  129:  9037 
  • 25c Schuy S. Faiss S. Yoder NC. Kalsani V. Kumar K. Janshoff A. Vogel R. J. Phys. Chem. B  2008,  112:  8250 
  • 26 Breitenstein D. Rommel CE. Mollers R. Wegener J. Hagenhoff B. Angew. Chem. Int. Ed.  2007,  46:  5332 
  • 27 Kraft ML. Weber PK. Longo ML. Hutcheon ID. Boxer SG. Science  2006,  313:  1948 
  • 28 Folch J. Lees M. Stanley GHS. J. Biol. Chem.  1957,  226:  497 
  • 29 Momoi T. Ando S. Magai Y. Biochim. Biophys. Acta  1976,  441:  488 
  • 30 Naturally occurring GM1 contains two different acyl chain lengths (see Scheme 2), see: Schwarzmann G. Sandhoff K. Methods Enzymol.  1987,  138:  319 
  • 31 Schwarzmann G. Wendeler M. Sandhoff K. Glycobiology  2005,  15:  1302