Subscribe to RSS
DOI: 10.1055/s-0029-1218542
The Design of Chiral Double Hydrogen Bonding Networks and Their Applications to Catalytic Asymmetric Carbon-Carbon and Carbon-Oxygen Bond-Forming Reactions
Publication History
Publication Date:
09 December 2009 (online)
Abstract
This review focuses on the applications of multicenter organocatalysts, which can form chiral hydrogen bonded networks. The high tunabilities of these catalysts in terms of their active sites, chiral spacers, and tolerated reaction conditions have been used advantageously in applications to various classes of catalytic asymmetric carbon-carbon and carbon-oxygen bond forming reactions. The high stereoselectivities of these reactions are attributed to the chemoselective dual activation of both the nucleophile and electrophile reacting partners in asymmetric space. The key requirements for the cooperative effects of weak noncovalent-bonding interactions are discussed.
1 Introduction
2 General Concept for the Design of Chiral Hydrogen Bonding Networks
3 Bis-thiourea-type Homo-bifunctional Organocatalysts
3.1 Enantioselective Morita-Baylis-Hillman Reaction
4 Guanidinium-Thiourea Hetero-multifunctional Organocatalysts
4.1 Catalytic Diastereo- and Enantioselective Nitroaldol Reaction of Prochiral Aldehydes
4.2 	Catalytic Diastereoselective Nitroaldol Reaction of 
α-Chiral
         Aldehydes
4.3 Catalytic Asymmetric Nitroaldol Reaction of α-Keto Esters
4.4 Catalytic Asymmetric Nitro-Mannich-type Reaction
4.5 Catalytic Asymmetric Mannich-type Reaction with Malonates
5 Guanidinium-Urea Hetero-multifunctional Organocatalysts
5.1 Catalytic Asymmetric Epoxidation with Hydrogen Peroxide
6 Summary
Key words
asymmetric synthesis - catalysis - guanidinium - thiourea - urea
- 1a 
             
            
Silverman RB. The Organic Chemistry of Enzyme-Catalyzed Reactions Academic; San Diego / CA: 2002. - 1b 
             
            
Duagas H. Bioorganic Chemistry Springer; New York: 1999. - For reviews, see:
 - 2a 
             
            
Shibasaki M.Matsunaga S.Kumagai N. Synlett 2008, 1583 - 2b 
             
            
Shibasaki M.Kanai M. Org. Biomol. Chem. 2007, 5: 2027 - 2c 
             
            
Shibasaki M.Kanai M.Matsunaga S. Aldrichimica Acta 2006, 39: 31 - 2d 
             
            
Shibasaki M.Matsunaga S. Chem. Soc. Rev. 2006, 35: 269 - 2e 
             
            
Kanai M.Kato N.Ichikawa E.Shibasaki M. Synlett 2005, 1491 - 2f 
             
            
Shibasaki M.Yoshikawa N. Chem. Rev. 2002, 102: 2187 - 2g 
             
            
Shibasaki M.Sasai H.Arai T. Angew. Chem. Int. Ed. Engl. 1997, 36: 1236 - 3a 
             
            Lewis Acids in Organic Synthesis
              
            Vols.
            1 and 2: 
             
            
Yamamoto H. Wiley; New York: 2000. - 3b 
             
            Comprehensive
               Asymmetric Catalysis
              
            Vols. 1-3: 
             
            
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. - 4a 
             
            
Jeffrey G.Saenger W. Hydrogen Bonding in Biological Structures Springer; Berlin: 1991. - 4b 
             
            
Desiraju GR.Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press; Oxford: 1999. - 4c 
             
            
Williams DH.Westwell MS. Chem. Soc. Rev. 1998, 27: 57 - For selected general reviews on asymmetric organocatalysis, see:
 - 5a 
             
            
Berkessel A.Gröger H. Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2005. - 5b 
             
            Enantioselective
               Organocatalysis: Reaction and Experimental Procedures
              
             
            
Dalko PI. Wiley and Sons; New York: 2007. - 5c 
             
            
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2001, 40: 3726 - 5d 
             
            
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 - 5e 
             
            
MacMillan DWC. Nature (London) 2008, 455: 304 - For selected reviews on asymmetric catalysis by hydrogen bond donors, see:
 - 6a 
             
            
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 - 6b 
             
            
Takemoto Y.Miyabe H. Chimia 2007, 61: 269 - 6c 
             
            
Connon SJ. Chem. Eur. J. 2006, 12: 5418 - 6d 
             
            
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 - 6e 
             
            
Akiyama T.Itoh J.Fuchibe K. Adv. Synth. Catal. 2006, 348: 999 - 6f 
             
            
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299 - 6g 
             
            
Schreiner PR. Chem. Soc. Rev. 2003, 32: 289 - For pioneering work using chiral urea/thiourea catalysts by Jacobsen’s group, see:
 - 7a 
             
            
Sigman MS.Jacobsen EN.
J. Am. Chem. Soc. 1998, 120: 4901 - For a recent mechanistic study, see:
 - 7b 
             
            
Zuend SJ.Jacobsen EN.
J. Am. Chem. Soc. 2007, 129: 15872 - For counterion catalysis by Jacobsen’s group, see:
 - 7c 
             
            
Raheem I.Thiara PS.Peterson EA.Jacobsen EN. J. Am. Chem. Soc. 2007, 129: 13404 - 7d 
             
            
Reisman SE.Doyle AG.Jacobsen EN. J. Am. Chem. Soc. 2008, 130: 7198 - For other works by Jacobsen’s group:
 - 7e  
            
See also ref. 6; and references cited therein
 - For Takemoto’s original work, see:
 - 8a 
             
            
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672 - For other works by Takemoto’s group, see:
 - 8b 
             
            
Miyabe M.Takemoto Y. Bull. Chem. Soc. Jpn. 2008, 81: 785 - 8c  
            
See also ref. 6
 - For reviews on chiral guanidine catalysts, see:
 - 10a 
             
            
Ishikawa T.Isobe T. Chem. Eur. J. 2002, 8: 552 - 10b 
             
            
Ishikawa T.Kumamoto T. Synthesis 2006, 737 - 10c 
             
            
Leow D.Tan C.-H. Chem. Asian J. 2009, 4: 488 - For our work, see:
 - 11a 
             
            
Nagasawa K.Georgieva A.Takahashi H.Nakata T. Tetrahedron 2000, 56: 187 - 11b 
             
            
Nagasawa K.G eorgieva A.Takahashi H.Nakata T. Tetrahedron 2001, 57: 8959 - 11c 
             
            
Kita T.Georgieva A.Hashimoto Y.Nakata T.Nagasawa K. Angew. Chem. Int. Ed. 2002, 41: 2832 - 11d 
             
            
Kita T.Shin B.Hashimoto Y.Nagasawa K. Heterocycles 2007, 73: 241 - For representative examples, see:
 - 13a 
             
            
Schuster T.Bauch M.Dürner D.Göbel MW. Org. Lett. 2000, 2: 179 - 13b 
             
            
Schuster T.Kurz M.Göbel MW. J. Org. Chem. 2000, 65: 1697 - 14 
             
            
Yoon TP.Jacobsen EN. Science (Washington, DC) 2003, 299: 1691 - 15a 
             
            
Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Tetrahedron Lett. 2004, 45: 5589 - 15b 
             
            
Sohtome Y.Takemura N.Takagi R.Hashimoto Y.Nagasawa K. Tetrahedron 2008, 64: 9423 - 15c 
             
            
Sohtome Y.Hashimoto Y.Nagasawa K. Adv. Synth. Catal. 2005, 347: 1643 - 15d 
             
            
Sohtome Y.Takemura N.Iguchi T.Hashimoto Y.Nagasawa K. Synlett 2006, 144 - 15e 
             
            
Sohtome Y.Hashimoto Y.Nagasawa K. Eur. J. Org. Chem. 2006, 2894 - 15f 
             
            
Sohtome Y.Takemura N.Takada K.Takagi R.Iguchi T.Nagasawa K. Chem. Asian J. 2007, 2: 1150 - 15g 
             
            
Takada K.Takemura N.Cho K.Sohtome Y.Nagasawa K. Tetrahedron Lett. 2008, 49: 1623 - 15h 
             
            
Shin B.Tanaka S.Kita T.Hashimoto Y.Nagasawa K. Heterocycles 2008, 76: 801 - 15i 
             
            
Takada K.Nagasawa K. Adv. Synth. Catal. 2009, 351: 345 - 15j 
             
            
Takada K.Tanaka S.Nagasawa K. Synlett 2009, 1643 - 15k 
             
            
Tanaka S.Nagasawa K. Synlett 2009, 667 - 16a 
             
            
Nagasawa K.Georgieva A.Koshino H.Nakata T.Kita T.Hashimoto Y. Org. Lett. 2002, 4: 177 - 16b 
             
            
Ishiwata T.Hino T.Koshino H.Hashimoto Y.Nakata T.Nagasawa K. Org. Lett. 2002, 4: 2921 - 16c 
             
            
Nagasawa K.Hashimoto Y. Chem. Rec. 2003, 3: 201 - 16d 
             
            
Shimokawa J.Shirai K.Tanatani A.Hashimoto Y.Nagasawa K. Angew. Chem. Int. Ed. 2004, 43: 1559 - 16e 
             
            
Shimokawa J.Ishiwata T.Shirai K.Koshino H.Tanatani A.Nakata T.Hashimoto Y.Nagasawa K. Chem. Eur. J. 2005, 11: 6878 - 16f 
             
            
Nagasawa K.Shimokawa J. J. Synth. Org. Chem. Jpn. 2006, 64: 539 - 16g 
             
            
Iwamoto O.Koshino H.Hashizume D.Nagasawa K. Angew. Chem. Int. Ed. 2007, 46: 8625 - 16h 
             
            
Iwamoto O.Shinohara R.Nagasawa K. Chem. Asian J. 2009, 4: 277 - 17 
             
            
Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Chem. Pharm. Bull. 2004, 52: 477 - Curran apparently was the first to use urea derivatives for general acid-promoted reactions, see:
 - 18a 
             
            
Curran DP.Kuo LH. J. Org. Chem. 1994, 59: 3259 - 18b 
             
            
Curran DP.Kuo LH. Tetrahedron Lett. 1995, 36: 6647 - 18c 
             
            
Wilcox CS.Kim E.Romano D.Kuo LH.Burt AL.Curran DP. Tetrahedron 1995, 51: 621 - 19 
             
            
Hedstrom L. Chem. Rev. 2002, 102: 4501 - 20a 
             
            
Morita K.Suzuki Z.Hirose H. Bull. Chem. Soc. Jpn. 1968, 41: 2815 - 20b  
            
Baylis AB, andHillman MED. inventors; DE 2155113. ; Chem. Abstr. 1972, 77, 34174q - For general reviews, see:
 - 21a 
             
            
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 46: 4614 - 21b 
             
            
Basavaiah D.Rao KV.Reddy RJ. Chem. Soc. Rev. 2007, 36: 1581 - 21c 
             
            
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 - 21d 
             
            
Iwabuchi Y.Hatakeyama S. J. Synth. Org. Chem., Jpn. 2002, 60: 2 - 21e 
             
            
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 - 21f 
             
            
Ciganek E. In Organic Reactions Vol. 51:Paquette LA. Wiley; New York: 1977. p.201 - For pioneering work on asymmetric MBH reactions by Hatakeyama’s group, see:
 - 22a 
             
            
Iwabuchi Y.Nakatani M.Yokoyama N.Hatakeyama S. J. Am. Chem. Soc. 1999, 121: 10219 - 22b 
             
            
Iwabuchi Y.Furukawa M.Esumi T.Hatakeyama S. Chem. Commun. (Cambridge) 2001, 2030 - 22c 
             
            
Iwabuchi Y.Sugihara T.Esumi T.Hatakeyama S. Tetrahedron Lett. 2001, 42: 7867 - 22d 
             
            
Nakano A.Takahashi K.Ishihara J.Hatakeyama S. Org. Lett. 2006, 8: 5357 - For representative chiral Lewis base catalysts, see:
 - 23a 
             
            
Oishi T.Oguri H.Hirama M. Tetrahedron: Asymmetry 1995, 6: 1241 - 23b 
             
            
Marko IE.Giles PR.Hindley NJ. Tetrahedron 1997, 53: 1015 - 23c 
             
            
Barrett AGM.Cook AS.Kamimura A. Chem. Commun. 1998, 2533 - 23d 
             
            
Imbriglio JE.Vasbinder MM.Miller SJ. Org. Lett. 2003, 5: 3741 - 23e 
             
            
Vasbinder MM.Imbriglio JE.Miller SJ. Tetrahedron 2006, 62: 11450 - 23f 
             
            
Aroyan CE.Vasbinder MM.Miller SJ. Org. Lett. 2005, 7: 3849 - 23g 
             
            
Tang H.Zhao G.Zhou Z.Zhou Q.Tang C. Tetrahedron Lett. 2006, 47: 5717 - 23h 
             
            
Xu J.Guan Y.Yang S.Ng Y.Peh G.Tan C.-H. Chem. Asian J. 2006, 1: 724 - For other chiral Lewis base catalysts
 - 23i  
            
See also ref. 20; and references cited therein
 - For chiral Brønsted acid and achiral Lewis base systems, see:
 - 24a 
             
            
Yamada YMA.Ikegami S. Tetrahedron Lett. 2000, 41: 2165 - 24b 
             
            
McDougal NT.Schaus SE. J. Am. Chem. Soc. 2003, 125: 12094 - 24c 
             
            
McDougal NT.Trevellini WL.Rodgen SA.Kliman LT.Schaus SE. Adv. Synth. Catal. 2004, 346: 1231 - 24d 
             
            
Rodgen SA.Schaus SE. Angew. Chem. Int. Ed. 2006, 45: 4929 - 24e  
            
See also ref. 15a
 - 24f  
            
See also ref. 15b. Recently improved bis-thiourea catalysts were reported by Berkessel and Shi’s groups, see:
 - 24g 
             
            
Berkessel A.Roland K.Neudöfl JM. Org. Lett. 2006, 8: 4195 - 24h 
             
            
Shi M.Liu X.-G. Org. Lett. 2008, 10: 1043 - 25 For a review of solvent-free approaches,
            see:  
            
Walsh PJ.Li H.de Parrodi CA. Chem. Rev. 2007, 107: 2503 - 26a 
             
            
Schreiner PR.Wittkopp A. Org. Lett. 2002, 4: 217 - 26b 
             
            
Wittkopp A.Schreiner PR. Chem. Eur. J. 2003, 9: 407 - These results are not entirely novel; Connon and Maher also reported very similar results with the use of methyl acrylate and methyl vinyl ketone at almost the same time as our report, see:
 - 27a 
             
            
Maher DJ.Connon SJ. Tetrahedron Lett. 2004, 45: 1301 - For other works by Connon’s group:
 - 27b  
            
See also ref. 6, including their review
 - 27c 
             
            
Connon SJ. Synlett 2009, 354 - 28 
             
            
Jones CES.Turega SM.Clarke ML.Philp D. Tetrahedron Lett. 2008, 49: 4666 - For mechanistic studies on the MBH reaction, see:
 - 29a 
             
            
Raheem IT.Jacobsen EN. Adv. Synth. Catal. 2005, 347: 1701 - 29b 
             
            
Aggawal VK.Fulford SY.Lloyd-Jones GC. Angew. Chem. Int. Ed. 2005, 44: 1706 - 29c 
             
            
Price KE.Broadwater SJ.Jung HM.McQuade DT. Org. Lett. 2005, 7: 147 - 29d 
             
            
Price KE.Broadwater SJ.Walker BJ.McQuade DT. J. Org. Chem. 2005, 70: 3980 - 29e 
             
            
Buskens P.Klankermayer J.Leitner W. J. Am. Chem. Soc. 2005, 127: 16762 - 30 
             
            
Henry LCR. Hebd. Seances Acad. Sci. 1895, 120: 1265 - 31a 
             
            
Palomo C.Oiarbide M.Laso A. Eur. J. Org. Chem. 2007, 2561 - 31b 
             
            
Boruwa J.Gogoi N.Saikia PP.Barua NC. Tetrahedron: Asymmetry 2006, 17: 3315 - 31c 
             
            
Palomo C.Oiarbide M.Mielgo A. Angew. Chem. Int. Ed. 2004, 43: 5442 - 31d 
             
            
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001. - For syn-selective nitroaldol reactions, see:
 - 32a 
             
            
Sasai H.Tokunaga T.Watanabe S.Suzuki T.Itoh N.Shibasaki M. J. Org. Chem. 1995, 60: 7388 - 32b 
             
            
Arai T.Watanabe M.Yanagisawa A. Org. Lett. 2007, 9: 3595 - 32c 
             
            
Arai T.Takashita R.Endo Y.Watanabe M.Yanagisawa A. J. Org. Chem. 2008, 73: 4903 - 32d 
             
            
Toussaint A.Pfaltz A. Eur. J. Org. Chem. 2008, 4591 - For anti-selective nitroaldol reactions, see:
 - 32e 
             
            
Uraguchi D.Sakaki S.Ooi T. J. Am. Chem. Soc. 2007, 129: 12392 - 32f 
             
            
Nitabaru T.Kumagai N.Shibasaki M. Tetrahedron Lett. 2008, 49: 272 - 32g 
             
            
Handa S.Nagawa K.Sohtome Y.Matsunaga S.Shibasaki M. Angew. Chem. Int. Ed. 2008, 47: 3230 - For the first report of an enantioselective nitroaldol reaction with nitromethane, see:
 - 33a 
             
            
Sasai H.Suzuki T.Arai S.Arai T.Shibasaki M. J. Am. Chem. Soc. 1992, 114: 4418 - For other works:
 - 33b  
            
See also ref. 31a; and references cited therein
 - 33c  
            
See also ref. 31b; and references cited therein
 - 33d  
            
See also ref. 31c; and references cited therein
 - 34a 
             
            
Tosaki S.Hara K.Gnanadesikan V.Morimoto H.Harada S.Sugita M.Yamagiwa N.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 11776 - 34b 
             
            
Hara K.Tosaki S.Gnanadesikan V.Morimoto H.Harada S.Sugita M.Yamagiwa N.Matsunaga S.Shibasaki M. Tetrahedron 2009, 65: 5030 - For reviews on asymmetric phase-transfer catalysts, see:
 - 35a 
             
            
Maruoka K.Ooi T. Chem. Rev. 2003, 103: 3013 - 35b 
             
            
O’Donnell MJ. Acc. Chem. Res. 2004, 37: 506 - 35c 
             
            
Lygo B.Andrews BI. Acc. Chem. Res. 2004, 37: 518 - 35d 
             
            
Hashimoto T.Maruoka K. Chem. Rev. 2007, 107: 5656 - 35e 
             
            
Maruoka K. Asymmetric Phase Transfer Catalysis Wiley-VCH; Weinheim: 2008. - 36a 
             
            
Ohshima T.Shibuguchi T.Fukuta Y.Shibasaki M. Tetrahedron 2004, 60: 7743 - 36b 
             
            
Chinchilla R.Mazon P.Nájera C.Ortega FJ. Tetrahedron: Asymmetry 2004, 15: 2603 - 37 
             
            
Klussmann M.Iwamura H.Mathew SP.Wells DH.Pandya U.Armstrong A.Blackmond DG. Nature (London) 2006, 441: 621 - For a discussion about long alkyl chain effects on quaternary ammonium, see:
 - 38a 
             
            
Kitamura M.Shirakawa S.Maruoka K. Angew. Chem. Int. Ed. 2005, 44: 1549 - For combined proline-surfactant organocatalysts, see:
 - 38b 
             
            
Mase N.Nakai Y.Ohara N.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 734 - 38c 
             
            
Hayashi Y.Aratake S.Okano T.Takahashi J.Sumiya T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 5527 - For approaches to asymmetric reactions using an excess of chiral surfactant, see:
 - 38d 
             
            
Dasgupta A.Mitra RN.Roy S.Das PK. Chem. Asian J. 2006, 1: 780 ; and references cited therein - For a discussion about surfactant effects on secondary amine catalyzed aldol reactions:
 - 39a  
            
See ref. 38b. See also:
 - 39b 
             
            
Cordova A.Notz W.Barbas CF. Chem. Commun. (Cambridge) 2002, 3024 - 39c 
             
            
Peng Y.-Y.Ding Q.-P.Li Z.Wang PG.Cheng J.-P. Tetrahedron Lett. 2003, 44: 3871 - 40 
             
            
Girard C.Kagan HB. Angew. Chem. Int. Ed. 1998, 37: 2922 - For the isolation and structural determination of compound 16b, see:
 - 42a 
             
            
Kakeya H.Morishita M.Kobinata K.Osono M.Ishizuka M.Osada H. J. Antibiot. 1998, 51: 1126 - 42b 
             
            
Kakeya H.Morishita M.Koshino H.Morita T.Kobayashi K.Osada H. J. Org. Chem. 1999, 64: 1052 - For a review on the stereoselective synthesis of compounds 16a and 16b, see:
 - 42c 
             
            
Grajewska A.Rozwadowska MD. Tetrahedron: Asymmetry 2007, 18: 803 ; and references cited therein - For catalytic diastereoselective nitroaldol reactions of chiral aldehydes with nitromethane:
 - 43a  
            
See ref. 15d. See also:
 - 43b 
             
            
Sasai H.Kim W.-S.Suzuki T.Shibasaki M.Mistuda M.Hasegawa J.Ohashi T. Tetrahedron Lett. 1994, 35: 6123 - 43c 
             
            
Corey EJ.Zhang F.-Y. Angew. Chem. Int. Ed. 1999, 38: 1931 - For catalytic doubly diastereoselective nitroaldol reactions of chiral aldehydes with prochiral nitroalkanes, see:
 - 43d 
             
            
Sohtome Y.Kato Y.Handa S.Aoyama N.Nagawa K.Matsunaga S.Shibasaki M. Org. Lett. 2008, 10: 2231 ; and references cited therein - 44 
             
            
Reetz MT. Chem. Rev. 1999, 99: 1121 - For general reviews on the stereoselective construction of quaternary stereocenters, see:
 - 45a 
             
            
Christofees J.Baro A. Adv. Synth. Catal. 2005, 347: 1473 - 45b 
             
            Quaternary Stereocenters
               - Challenges and Solutions for Organic Synthesis
              
             
            
Christofees J.Baro A. Wiley-VCH; Weinheim: 2005. - 45c 
             
            
Douglas CJ.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5363 - For enantioselective nitroaldol reactions of α-keto esters, see:
 - 46a 
             
            
Christensen C.Juhl K.Jørgensen KA. Chem. Commun. (Cambridge) 2001, 2222 - 46b 
             
            
Christensen C.Juhl K.Jørgensen KA. J. Org. Chem. 2002, 67: 4875 - 46c 
             
            
Lu S.-F.Du D.-M.Zhang SW.Xu J. Tetrahedron: Asymmetry 2004, 15: 3433 - 46d 
             
            
Du D.-M.Lu S.-F.Fang T.Xu J. J. Org. Chem. 2005, 70: 3712 - 46e 
             
            
Qin B.Xiao X.Liu X.Huang J.Wen Y.Feng X. J. Org. Chem. 2007, 72: 10302 - 46f 
             
            
Choudary BM.Ranganath KVS.Pal U.Kantam ML.Sreedhar B. J. Am. Chem. Soc. 2005, 127: 13167 - 46g 
             
            
Li H.Wang B.Deng L. J. Am. Chem. Soc. 2006, 128: 732 - For enantioselective nitroaldol reactions of α-ketophosphonates, see:
 - 46h 
             
            
Mandal T.Samanta S.Zhao C.-G. Org. Lett. 2007, 9: 943 - For enantioselective nitroaldol reactions of trifluoromethyl ketones, see:
 - 46i 
             
            
Tur F.Saá JM. Org. Lett. 2007, 9: 5079 - For catalytic kinetic resolution approaches to construct chiral tertiary nitroaldol reaction products from simple ketones:
 - 46j  
            
See also ref. 34.
 - 48 For original work concerning ‘on
            water’ acceleration, see:  
            
Narayan S.Muldoon J.Finn MG.Fokin VV.Kolb HC.Sharpless KB. Angew. Chem. Int. Ed. 2005, 44: 3275 - For general reviews on catalytic asymmetric Mannich-type reactions, see:
 - 49a 
             
            
Ting A.Schaus SE. Eur. J. Org. Chem. 2007, 5797 - 49b 
             
            
Verkade JM.van Hemert JC.Quaedflieg PLM.Rutjes FJT. Chem. Soc. Rev. 2007, 37: 29 - For reviews on catalytic asymmetric nitro-Mannich-type reactions, see:
 - 50a 
             
            
Westermann B. Angew. Chem. Int. Ed. 2003, 42: 151 - 50b 
             
            
Marqués-Lopéz E.Merino P.Tejero T.Herrera RP. Eur. J. Org. Chem. 2009, 2401 - For pioneering work on anti-selective catalytic asymmetric nitro-Mannich-type reactions, see:
 - 51a 
             
            
Yamada K.-I.Moll G.Shibasaki M. Synlett 2001, 980 - For other works:
 - 51b  
            
See also ref. 50; and references cited therein
 - 52 For pioneering work on syn-selective catalytic asymmetric nitro-Mannich-type
            reactions, see:  
            
Handa S.Gnanadesikan V.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2007, 129: 4900 - 53a 
             
            
Petrini M. Chem. Rev. 2005, 105: 3949 - 53b 
             
            
Petrini M.Torregiani E. Synthesis 2007, 159 - For general reviews on catalytic asymmetric epoxidations, see:
 - 54a 
             
             Modern
               Oxidation Methods
              
             
            
Bäckvall J.-E. Wiley-VCH; Weinheim: 2004. - 54b 
             
            
Xia Q.-H.Ge H.-Q.Ye C.-P.Liu Z.-M.Su K.-X. Chem. Rev. 2005, 105: 1603 - 55 
             
            
Campos-Martin JM.Blanco-Brieva G.Fierro JLG. Angew. Chem. Int. Ed. 2006, 45: 6962 ; and references cited therein - 56a 
             
            
Juliá S.Masana J.Vega JC. Angew. Chem. Int. Ed. Engl. 1980, 19: 929 - 56b 
             
            
Juliá S.Guixer J.Masana J.Rocas J.Colonna S.Annuziata R.Molinari H. J. Chem. Soc., Perkin Trans. 1 1982, 1317 - For representative organocatalytic epoxidations with hydrogen peroxide, see:
 - 57a 
             
            
Arai S.Tsuge H.Shioiri T. Tetrahedron Lett. 1998, 39: 7563 - 57b 
             
            
Arai S.Tsuge H.Oku M.Miura M.Shioiri T. Tetrahedron 2002, 58: 1623 - 57c 
             
            
Dehmlow EV.Düttmann S.Neumann B.Stammler H.-G. Eur. J. Org. Chem. 2002, 2087 - 57d 
             
            
Berkessel A.Gasch N.Glaubiz K.Koch C. Org. Lett. 2001, 3: 3839 - 57e 
             
            
Kelly DR.Roberts SM. Biopolymers 2006, 84: 74 - 57f 
             
            
Berkessel A.Koch B.Toniolo C.Rainaldi M.Broxterman QB.Kaptein B. Biopolymers 2006, 84: 90 - 57g 
             
            
Geller T.Gerlach A.Krüger CM.Militzer H.-C. Tetrahedron Lett. 2004, 45: 5065 - 57h 
             
            
Geller T.Krüger CM.Militzer H.-C. Tetrahedron Lett. 2004, 45: 5069 - 57i 
             
            
Yi H.Zou G.Li Q.Chen Q.Tang J.He M.-y. Tetrahedron Lett. 2005, 46: 5665 - 57j 
             
            
Hori K.Tamura M.Tani K.Nishiwaki N.Ariga M.Tohda Y. Tetrahedron Lett. 2006, 47: 3115 - 57k 
             
            
Sundén H.Ibrahem I.Córdova A. Tetrahedron Lett. 2006, 47: 99 - 57l 
             
            
Zhao G.-L.Ibrahem I.Sundén H.Córdova A. Adv. Synth. Catal. 2006, 349: 1210 - 57m 
             
            
Marigo M.Franzén J.Poulsen TB.Zhuang W.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 6964 - 57n 
             
            
Jew S.-s.Lee JH.Jeong B.-S.Yoo M.-S.Kim M.-J.Lee J.Choi S.-h.Lee K.Lah MS.Park H.-g. Angew. Chem. Int. Ed. 2005, 44: 1383 - 57o 
             
            
Peris G.Jakobsche CE.Miller SJ. J. Am. Chem. Soc. 2007, 129: 8710 - 57p 
             
            
Wang X.Reisinger CM.List B. J. Am. Chem. Soc. 2008, 130: 6070 - 57q  
            
See also ref. 15k
 - 57r 
             
            
Terada M.Nakano M. Heterocycles 2008, 76: 1049 - 58a 
             
            
McManus JC.Carey JS.Taylor RJK. Synlett 2003, 365 - 58b 
             
            
McManus JC.Genski T.Carey JS.Taylor RJK. Synlett 2003, 369 - 58c 
             
            
Kumamoto T.Ebine K.Endo M.Araki Y.Fushimi Y.Miyamoto I.Ishikawa T.Isobe T.Fukuda K. Heterocycles 2005, 66: 347 - 58d 
             
            
Allingham MT.Howard-Jones A.Murphy PJ.Thomas DA.Caulkett PWR. Tetrahedron Lett. 2003, 44: 8677 - 58e  
            
See also ref. 57r
 
References
For other chiral urea and thiourea catalysts, see ref. 6 and references cited therein.
12For other chiral guanidine and guanidinium catalysts, see ref. 10 and references cited therein.
41In the absence of KOH, the reaction did not proceed at all. In addition, no reaction occurred after pretreatment of catalyst 2a with an excess of KOH (10 equiv to 2a). In this catalytic system, KOH might deprotonate the nitroalkane.
47Deng’s group reported an example of a cinchona alkaloid catalyzed nitroaldol reaction of α-keto esters with nitroethane; see ref. 46g.