Synlett 2010(4): 602-606  
DOI: 10.1055/s-0029-1218521
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

The Preparation of Substituted Pyrazoles from β,β-Dibromo-enones by a Tandem Condensation/Suzuki-Miyaura Cross-Coupling Process

Sandra Beltrán-Rodil, Michael G. Edwards, David. S. Pugh, Mark Reid, Richard J. K. Taylor*
Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
Fax: +44(1904)434523; e-Mail: rjkt1@york.ac.uk;
Further Information

Publication History

Received 28 September 2009
Publication Date:
02 December 2009 (online)

Abstract

Two consecutive tandem processes are described for the regioselective, two-step synthesis of 1,3,5-trisubstituted pyrazoles from α-hydroxyketones. The first, a tandem MnO2-mediated oxidation/Ramirez olefination reaction, provides a facile route to β,β-dibromo-enones. These valuable 1,3-dicarbonyl synthons can then be converted into 1,3,5-trisubstituted pyrazoles via a second tandem hydrazine condensation/Suzuki-Miyaura cross-coupling reaction. Using these procedures, a range of aryl and alkyl α-hydroxyketones have been transformed regioselectively into 1,3,5-trisubstituted pyrazoles.

    References and Notes

  • 1 Corey EJ. Fuchs PL. Tetrahedron Lett.  1972,  13:  3769 
  • See for example:
  • 2a Roush WR. Moriarty KJ. Brown BB. Tetrahedron Lett.  1990,  31:  6509 
  • 2b Shen W. Wang L. J. Org. Chem.  1999,  64:  8873 
  • 2c Molander GA. Yokoyama Y. J. Org. Chem.  2006,  71:  2493 
  • 3 Newman SG. Aureggi V. Bryan CS. Lautens M. Chem. Commun.  2009,  5236 
  • 4a Wang L. Shen W. Tetrahedron Lett.  1998,  39:  7625 
  • 4b Thielges S. Meddah E. Bisseret P. Eustache J. Tetrahedron Lett.  2004,  45:  907 
  • 4c Vieira TO. Meaney LA. Shi Y.-L. Alper H. Org. Lett.  2008,  10:  4899 
  • 4d Chai DI. Lautens M. J. Org. Chem.  2009,  74:  3054 ; and references therein
  • 5a Taylor RJK. Reid M. Foot J. Raw SA. Acc. Chem. Res.  2005,  38:  851 
  • 5b Donald JR. Edwards MG. Taylor RJK. Tetrahedron Lett.  2007,  48:  5201 
  • 5c Beltrán-Rodil S. Donald JR. Edwards MG. Raw SA. Taylor RJK. Tetrahedron Lett.  2009,  50:  3378 
  • 5d Donald JR. Taylor RJK. Synlett  2009,  59 
  • For lead references, see:
  • 6a Devery JJ. Mohanta PK. Casey BM. Flowers RA. Synlett  2009,  1490 
  • 6b Bishop BC. Brands KMJ. Gibb AD. Kennedy DJ. Synthesis  2004,  43 
  • A Beilstein literature search (August 2009) found only seven references to such compounds. For lead references see reference 10 and:
  • 7a Raulet C. Levas E. Bull. Soc. Chim. Fr.  1963,  2147 
  • 7b Murai S. Kuroki Y. Aya T. Sonoda N. Tsutsumi S. J. Chem. Soc., Chem. Commun.  1972,  741 
  • 8a Runcie KA. Taylor RJK. Chem. Commun.  2002,  974 
  • 8b Quesada E. Raw SA. Reid M. Roman E. Taylor RJK. Tetrahedron  2006,  62:  6673 
  • 9 Ramirez F. Desai NB. McKelvie N. J. Am. Chem. Soc.  1962,  84:  1745 
  • 10a Levkovskaya GG. Bozhenkov GV. Larina LI. Evstaf"eva IT. Mirskova AN. Russ. J. Org. Chem.  2001,  37:  644 
  • 10b Bozhenkov GV. Savosik VA. Klyba LV. Zhanchipova ER. Mirskova AN. Levkovskaya GG. Russ. J. Org. Chem.  2008,  44:  1194 ; and references therein
  • 11 Lakhrissi Y. Taillefumier C. Chrétien F. Chapleur Y. Tetrahedron Lett.  2001,  42:  7265 
  • α-Hydroxyketones were prepared by one of the following methods:
  • 12a via PIFA oxidation of the corresponding methyl ketone, see: Moriarty RM. Berglund BA. Penmasta R. Tetrahedron Lett.  1992,  33:  6065 
  • 12b Rubottom oxidation of the corresponding silyl enol ether, see: Barbee TR. Albizati KF. J. Org. Chem.  1991,  56:  6764 
  • 12c For steroid 1g, see: Seldes AM. Gros EG. Steroids  1982,  39:  181 
  • 15 Texier-Boullet F. Klein B. Hamelin J. Synthesis  1986,  409 
  • 18 Landge SM. Schmidt A. Outerbridge V. Török B. Synlett  2007,  1600 
13

All novel compounds (3b-g, 6d, 6f, 6g and 7d) were fully characterised. For example: 21-(2′,2′-Dibromoethenyl)-3β-methoxy-5-pregnen-20-one (3g): Pale-yellow micro-crystals; mp 113-115 ˚C (MeOH-H2O, 85:15); [α]D ²².5 +45.1 (c 1.00, CHCl3); R f = 0.21 (petrol-Et2O, 1:1); IR (NaCl): 2964, 2937, 2902, 2852, 2828, 1691, 1552, 1454, 1383, 1094, 732, 691 cm; ¹H NMR (400 MHz, CDCl3): δ = 7.25 (s, 1 H), 5.35-5.32 (m, 1 H), 3.34 (s, 3 H), 3.06 (dddd, J = 11.6, 11.6, 4.6, 4.6 Hz, 1 H), 2.55 (dd, J = 8.9, 8.9 Hz, 1 H), 2.39 (ddd, J = 13.2, 4.6, 2.4 Hz, 1 H), 2.32-2.23 (m, 1 H), 2.15 (ddd, J = 13.2, 11.6, 2.8 Hz, 1 H), 1.83-2.04 (m, 4 H), 1.37-1.72 (m, 8 H), 1.13-1.30 (m, 2 H), 1.05 (ddd, J = 13.4, 13.4, 3.4 Hz, 1 H), 0.95-1.02 (m, 1 H, obscured by singlet), 0.99 (s, 3 H), 0.63 (s, 3 H); ¹³C NMR (100 MHz, CDCl3): δ = 197.0, 140.8, 135.0, 121.1, 102.3, 80.2, 64.1, 57.0, 55.6, 50.0, 45.4, 38.8, 38.6, 37.1, 36.9, 31.9, 31.7, 27.9, 24.4, 22.2, 21.0, 19.3, 13.6; MS (ESI): m/z = 499 [M(79Br2) + H]+, 501 [M(79BrBr) + H]+, 503 [M(Br2) + H]+; HRMS-ESI: m/z [M + H]+ calcd for C23H33 79Br2O2: 499.0842; found: 499.0833 (1.8 ppm error); Anal. Calcd for C23H32Br2O2: C, 55.22; H, 6.45. Found: C, 55.04; H, 6.43.

14

In principle, Suzuki-Miyaura coupling could occur before cyclisation in the tandem process, but we believe that this is unlikely for the following reasons: (i) the β,β-dibromo-enone substrates fail to undergo any cross-coupling under the reaction conditions used and (ii) bromopyrazoles have been isolated from several of the tandem processes.

16

Typical procedure for the tandem oxidation-Ramirez olefination: 3,3-Dibromo-1-phenylpropenone (3a): A 100 mL round-bottom flask equipped with an argon inlet, a condenser and a magnetic stirrer, was charged with activated manganese dioxide (1.59 g, 18.36 mmol), phosphonium salt 7 (4.16 g, 8.08 mmol), powdered activated 4 Å molecular sieves (0.10 g) and THF (30 mL). KOt-Bu (0.86 g, 7.71 mmol) was then added to the reaction mixture followed by 2-hydroxyacetophenone [1a; recrystallised from petroleum ether (PE), 0.50 g, 3.67 mmol] as a solution in THF (6 mL). The reaction mixture was then allowed to stir at reflux for 3 h. After cooling to r.t., the mixture was filtered through a pad of Celite® and rinsed with EtOAc (200 mL). The filtrate was concentrated in vacuo and the product was pre-adsorbed on silica and purified by flash column chromatography (PE-Et2O, 9:1) to afford dibromo-enone 3a (0.62 g, 59%) as a yellow oil, R f  = 0.60 (PE-Et2O, 1:1), which solidified upon standing to give a dense yellow solid; mp 44-45 ˚C (Lit.7a 41.5-42.5 ˚C), which was fully characterized.

17

Typical procedure for the tandem condensation/cross-coupling: 1-Methyl-3,5-diphenyl-1H-pyrazole (6a): A 10 mL round-bottom flask equipped with an argon inlet, a condenser and a magnetic stirrer, was charged with 1,1-dimethylhydrazine (20.4 mg, 0.34 mmol) and THF (1 mL). Dibromo-enone 3a (50.0 mg, 0.17 mmol) was then added as a solution in THF (1 mL), followed by Pd(PPh3)4 (9.80 mg, 0.0085 mmol), phenylboronic acid (41.5 mg, 0.34 mmol) and powdered K3PO4 (108.0 mg, 0.51 mmol). After stirring at reflux for 18 h, the reaction mixture was allowed to cool to r.t. and filtered through a small plug of silica gel, rinsing with EtOAc (50 mL). The solvent was removed in vacuo and the oily residue was pre-adsorbed on silica and purified by flash column chromatography (PE-EtOAc, 9:1), to afford
1-methyl-3,5-diphenyl-1H-pyrazole (6a; 30.5 mg, 76%), R f  = 0.40 (PE-Et2O, 1:1), as a pale-yellow solid; mp 58-60 ˚C (Lit.¹8 58-60 ˚C).