Synlett 2009(15): 2382-2391  
DOI: 10.1055/s-0029-1217828
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Developing Continuous-Flow Microreactors as Tools for Synthetic Chemists

Karolin Geyera, Tomas Gustafssona,b, Peter H. Seeberger*a,c
a Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
Fax: +41(44)6331235; e-Mail: seeberger@org.chem.ethz.ch;
b Medicinal Chemistry, AstraZeneca R&D, Mölndal, 43183 Mölndal, Sweden
c Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Arnimallee 22, 14195 Berlin, Germany
e-Mail: peter.seeberger@mpikg.mpg.de;
Weitere Informationen

Publikationsverlauf

Received 5 December 2008
Publikationsdatum:
28. August 2009 (eFirst)

Abstract

Microfluidic devices are emerging as true alternatives to traditional batch processes, as evidenced by recent applications in important synthetic transformations. Besides biologically important oligomers such as β-peptides and oligosaccharides, pharmaceutically active substances have been the target of the most recent investigations. Furthermore, synthetic processes posing challenges to process chemists such as highly exothermic or explosive reactions and reactions that are difficult to control on large scale (such as radical transformations) have been of particular interest. This account briefly introduces the concepts of continuous-flow microreactors, and reviews our investigations on the application of microfluidic devices in synthetic transformations such as glycosylations, amide bond formations mediated by trimethylaluminum, radical-based transformations, and deoxyfluorinations.

1 Introduction

2 Classical Chemical Transformations

2.1 Proof-of-Principle Studies

2.2 Trimethylaluminum-Mediated Amide Bond Formations

2.3 Deoxyfluorinations with (Diethylamino)sulfur Trifluoride

3 Synthesis of Biopolymers

3.1 Synthesis of Carbohydrates

3.1.1 Glycosylation Reactions

3.1.2 Synthesis of Oligosaccharides

3.2 Synthesis of β-Peptides

4 Free-Radical-Based Reactions

4.1 Dehalogenations and Deoxygenations

4.2 Hydrosilylations

5 Conclusions

    References

  • 1a Rubin AE. Tummala S. Both DA. Wang C. Delaney E. Chem. Rev.  2006,  106:  2794 
  • 1b McKenzie P. Kiang S. Tom J. Rubin AE. Futran M. AIChE J.  2006,  52:  3990 
  • For recent reviews and books on microreactor technology, see:
  • 2a Ehrfeld W. Hessel V. Löwe H. Microreactors: New Technology for Modern Chemistry   Wiley-VCH; Weinheim: 2000. 
  • 2b Hessel V. Hardt S. Löwe H. Chemical Micro Process Engineering   Wiley-VCH; Weinheim: 2004. 
  • 2c Jähnisch K. Hessel V. Löwe H. Baerns M. Angew. Chem. Int. Ed.  2004,  43:  406 
  • 2d Watts P. Haswell SJ. Chem. Soc. Rev.  2005,  34:  235 
  • 2e Thayer AM. Chem. Eng. News  2005,  83(22):  43 
  • 2f Geyer K. Codée JDC. Seeberger PH. Chem. Eur. J.  2006,  12:  8434 
  • 2g Brivio M. Verboom W. Reinhoudt DN. Lab Chip  2006,  6:  329 
  • 2h Mason BP. Price KE. Steinbacher JL. Bogdan AR. McQuade DT. Chem. Rev.  2007,  107:  2300 
  • 2i Ahmed-Omer B. Brandt JC. Wirth T. Org. Biomol. Chem.  2007,  5:  733 
  • 2j Kang L. Chung BG. Langer R. Khademhosseini A. Drug Discovery Today  2008,  13: 
  • 2k Fukuyama T. Rahman T. Sato M. Ryu I. Synlett  2008,  2:  151 
  • 2l Wiles C. Watts P. Eur. J. Org. Chem.  2008,  10:  1655 
  • For recent publications on microreactors in organic synthesis, see:
  • 3a Usutani H. Tomida Y. Nagaki A. Okamoto H. Nokami Y. Yoshida J. J. Am. Chem. Soc.  2007,  129:  3046 
  • 3b Hartung A. Keane MA. Kraft A. J. Org. Chem.  2007,  72:  10235 
  • 3c Bula WP. Verboom W. Reinhoudt DN. Gardeniers HJ. Lab Chip  2007,  7:  1717 
  • 3d Sahoo HR. Kralj JG. Jensen KF. Angew. Chem. Int. Ed.  2007,  46:  5704 
  • 3e Tanaka K. Motomatsu S. Koyama K. Tanaka SI. Fukase K. Org. Lett.  2007,  9:  299 
  • 3f Trapp O. Weber SK. Bauch S. Hofstadt W. Angew. Chem. Int. Ed.  2007,  46:  7307 
  • 3g Fukuyama T. Kobayashi M. Rahman T. Kamata N. Ryu I. Org. Lett.  2008,  10:  433 
  • 3h Baumann M. Baxendale IR. Ley SV. Nikbin N. Smith CD. Tierney JP. Org. Biomol. Chem.  2008,  6:  1577 
  • 3i Csajági C. Borcsek B. Niesz K. Kovács I. Székelyhidi Z. Bajkó Z. Ürge L. Darvas F. Org. Lett.  2008,  10:  1589 
  • For recent examples of microreactor-based transformations from this laboratory, see:
  • 4a Snyder DA. Noti C. Seeberger PH. Schael F. Bieber T. Rimmel G. Ehrfeld W. Helv. Chim. Acta  2005,  88: 
  • 4b Ratner DM. Murphy ER. Jhunjhunwala M. Snyder DA. Jensen KF. Seeberger PH. Chem. Commun.  2005,  578 
  • 4c Flögel O. Codée JDC. Seebach D. Seeberger PH. Angew. Chem. Int. Ed.  2006,  45:  7000 
  • 4d Geyer K. Seeberger PH. Helv. Chim. Acta  2007,  90:  395 
  • 4e Carrel FR. Geyer K. Codée JDC. Seeberger PH. Org. Lett.  2007,  9:  2285 
  • 4f Gustafsson T. Pontén F. Seeberger PH. Chem. Commun.  2008,  1100 
  • 4g Gustafsson T. Gilmour R. Seeberger PH. Chem. Commun.  2008,  3022 
  • 4h Odedra A. Geyer K. Gustafsson T. Gilmour R. Seeberger PH. Chem. Commun.  2008,  3025 
  • 4i Odedra A. Seeberger PH. Angew. Chem. Int. Ed.  2009,  48:  2699 
  • For recent publications on protein digestions using microreactors, see:
  • 5a Liu J. Lin S. Qi D. Deng C. Yang P. Zhang X. J. Chromatogr., A  2007,  1-2:  169 
  • 5b Ji J. Zhang Y. Zhou X. Kong J. Tang Y. Liu B. Anal. Chem.  2008,  80:  2457 
  • 5c Ma J. Liang Z. Qiao X. Deng Q. Tao D. Zhang L. Zhang Y. Anal. Chem.  2008,  80:  2949 
  • 5d Le Nel A. Minc N. Smadja C. Slovakova M. Bilkova Z. Peyrin JM. Viovy JL. Taverna M. Lab Chip  2008,  8:  294 
  • For recent publications on PCR using microfluidic devices, see:
  • 6a Charles MC. Sucher NJ. Methods Mol. Biol.  2006,  321:  131 
  • 6b Chen L. West J. Auroux PA. Manz A. Day P. J. Anal. Chem.  2007,  79:  9185 
  • For recent publications on the synthesis of nanoparticles in continuous flow, see:
  • 7a Yen BK. Günther A. Schmidt MA. Jensen KF. Bawendi MG. Angew. Chem. Int. Ed.  2005,  44:  5447 
  • 7b Hung LH. Choi KM. Tseng WY. Tan YC. Shea KJ. Lee AI. Lab Chip  2006,  6:  174 
  • 7c Yang H. Luan W. Tu ST. Wang ZM. Lab Chip  2008,  8:  451 
  • For publications on fluorinations in microreactors, see:
  • 8a Jähnisch KJ. Baerns M. Hessel V. Ehrfeld W. Haverkamp V. Loewe H. Wille C. Guber A. J. Fluorine Chem.  2000,  105:  117 
  • 8b Chambers RD. Holling D. Spink RCH. Sandford G. Lab Chip  2001,  1:  132 
  • 8c de Mas N. Günther A. Schmidt MA. Jensen KF. Ind. Eng. Chem. Res.  2003,  42:  698 
  • 8d Chambers RD. Fox MA. Sandford G. Lab Chip  2005,  5:  1132 
  • 8e Chambers RD. Sandford G. Trmcic J. Okazoe T. Org. Process Res. Dev.  2008,  12:  339 
  • 8f Negi DS. Köppling L. Lovis K. Abdallah R. Budde U. Org. Process Res. Dev.  2008,  12:  345 
  • 9 Wheeler RC. Benali O. Deal M. Farrant E. MacDonald JF. Warrington BH. Org. Process Res. Dev.  2007,  11:  704 
  • For applications of continuous-flow microreactors on mesoscale, see:
  • 10a Taghavi-Moghadam S. Kleemann A. Golbig KG. Org. Process Res. Dev.  2001,  5:  652 
  • 10b Liu S. Fukuyama T. Sato M. Ryu I. Org. Process Res. Dev.  2004,  8:  477 
  • 10c Zhang X. Stefanick S. Villani FJ. Org. Process Res. Dev.  2004,  8:  455 
  • 10d Acke DRJ. Stevens CV. Org. Process Res. Dev.  2006,  10:  417 
  • For publications on on-line analysis in continuous flow by use of IR or Raman spectroscopy, see:
  • 11a Fletcher PD. Haswell SJ. Zhang X. Electrophoresis  2003,  24:  3239 
  • 11b Aarnoutse PJ. Westerhuis JA. Anal. Chem.  2005,  77:  1228 
  • 11c Barnes SE. Cygan ZT. Yates JK. Beers KL. Amis EJ. Analyst  2006,  131:  1027 
  • 11d Pelletier MJ. Fabiilli ML. Moon B. J. Appl. Spectrosc.  2007,  61:  1107 
  • 11e Ferstl W. Klahn T. Schweikert W. Billeb G. Schwarzer M. Loebbecke S. Chem. Eng. Technol.  2007,  30:  370 
  • 11f Urakawa A. Trachsel F. Rudolf von Rohr P. Baiker A. Analyst  2008,  133:  1352 
  • 12a Rathke MW. Howak M. J. Org. Chem.  1985,  50:  2624 
  • 12b Simoni D. Invidiata FP. Manfredini S. Ferroni R. Lampronti I. Roberti M. Pollini GP. Tetrahedron Lett.  1997,  38:  2749 
  • 12c Schwetlick K. Organikum   Wiley-VCH; Weinheim: 2002. 
  • 13 Basha A. Lipton M. Weinreb SM. Tetrahedron Lett.  1977,  18:  4171 
  • 14 Mickel SJ. Sedelmeier GH. Niederer D. Schuerch F. Grimler D. Koch G. Daeffler R. Osmani A. Hirni A. Schaer K. G amboni R. Bach A. Chaudhary A. Chen S. Chen W. Hu B. Jagoe CT. Kim HY. Kinder FR. Liu Y. Lu Y. McKenna J. Prashad M. Ramsey TM. Repic O. Rogers L. Shieh WC. Wang RM. Waykole L. Org. Process Res. Dev.  2004,  8:  101 
  • 15 Lan R. Liu Q. Fan P. Lin S. Fernando SR. McCallion D. Pertwee R. Makriyannis A. J. Med. Chem.  1999,  42:  769 
  • 16a Müller K. Faeh C. Diederich F. Science  2007,  317:  1881 
  • 16b Kirk KL. Org. Process Res. Dev.  2008,  12:  305 
  • 17 Singh RP. Shreeve JM. Synthesis  2002,  2561 
  • 18 Carpino LA. Beyermann M. Wenschuh H. Bienert M. Acc. Chem. Res.  1996,  29:  268 
  • 19 O’Hagan D. Chem. Soc. Rev.  2008,  37:  308 
  • 20 Ravida A. Liu XY. Kovacs L. Seeberger PH. Org. Lett.  2006,  8:  1815 
  • 21 Liu XY. Stocker BL. Seeberger PH. J. Am. Chem. Soc.  2006,  128:  3638 
  • 22 Carrel FR. Seeberger PH. J. Carbohydr. Chem.  2007,  26:  125 
  • 23a Seebach D. Beck AK. Bierbaum DJ. Chem. Biodivers.  2004,  1:  1111 
  • 23b Cheng RP. Gellman SH. DeGrado WF. Chem. Rev.  2001,  101:  3219 
  • 24 Imamoto T. McCombie SW. Fry A. In Comprehensive Organic Synthesis   Vol. 8:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.811 and 983 
  • 25 Chatgilialoglu C. Chem. Eur. J.  2008,  14:  2310 
  • 26 Kopping B. Chatgilialoglu C. Zhender M. Giese B. J. Org. Chem.  1992,  57:  3994