RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217719
A Mild Protocol for the Efficient Synthesis of 5,6-Unsubstituted 1,4-Dihydropyridines
Publikationsverlauf
Publikationsdatum:
29. Juli 2009 (online)

Abstract
Treatment of 6-alkoxy-1,4,5,6-tetrahydropyridines with neutral alumina (activity grade I) suspended in refluxing acetonitrile, afforded 1,4-dihydropyridines in excellent yields. This method allowed the efficient synthesis of 5,6-unsubstituted dihydropyridines, which are difficult to prepare by traditional methods, from acyclic and readily available precursors.
Key words
eliminations - heterocycles - dihydropyridines - cerium(IV) - Lewis acids
- For some applications of the ‘privileged scaffold’ concept in drug design, see:
- 1a
Muller G. Drug Discovery Today 2003, 8: 681Reference Ris Wihthout Link - 1b
DeSimone RW.Currie KS.Mitchell SA.Darrow JW.Pippin DA. Comb. Chem. High Throughput Screening 2004, 7: 473Reference Ris Wihthout Link - 1c
Costantino L.Barlocco D. Curr. Med. Chem. 2006, 13: 65Reference Ris Wihthout Link - 1d
Shelat AA.Kiplin Guy R. Nature Chem. Biol. 2007, 3: 442Reference Ris Wihthout Link - 2
Evans BE.Rittle KE.Bock MG.DiPardo RM.Freidinger RM.Whitter WL.Lundell GF.Verber DF.Anderson PS.Chang RSL.Lotti VJ.Cerino DH.Chen TB.Kling PJ.Kunkel KA.Springer JP.Hirshfield J. J. Med. Chem. 1998, 31: 2235 - For selected reviews, see:
- 3a
Triggle DJ. Cell. Mol. Neurobiol. 2003, 23: 293Reference Ris Wihthout Link - 3b
Ohashi K.Ebihara A. Cardiovasc. Drug Rev. 2007, 14: 1Reference Ris Wihthout Link - 3c
Epstein BJ.Vogel K.Palmer BF. Drugs 2007, 67: 1309Reference Ris Wihthout Link - 3d
Fagard RH. J. Clin. Basic Cardiol. 1999, 2: 163Reference Ris Wihthout Link - 4
Vergouwen MD.Vermeulen M.de Haan RJ.Levi M.Roos YB. J. Cereb. Blood Flow Metab. 2007, 27: 1293 - 5
Straub T.Boesenberg C.Gekeler V.Boege F. Biochemistry 1997, 36: 10777 - 6
Donkor IO.Zhou X.Schmidt J.Agrawal KC.Kishore V. Bioorg. Med. Chem. 1998, 6: 563 - 7
Kuzmin A.Semenova S.Ramsey NF.Zvartau EE.Van Ree JM. Eur. J. Pharmacol. 1996, 295: 19 - For selected reviews on MDR modulators, see:
- 8a
Teodori E.Dei S.Scapecchi S.Gualtieri F. Farmaco 2002, 57: 385Reference Ris Wihthout Link - 8b
Avendaño C.Menéndez JC. Curr. Med. Chem. 2002, 9: 159Reference Ris Wihthout Link - 8c
Robert J.Jarry C. J. Med. Chem. 2003, 46: 4805Reference Ris Wihthout Link - 8d
Avendaño C.Menéndez JC. Med. Chem. Rev. Online 2004, 1: 419Reference Ris Wihthout Link - 8e
Boumendjel A.Baubichon-Cortay H.Trompier D.Perrotton T.Di Pietro A. Med. Res. Rev. 2005, 25: 453Reference Ris Wihthout Link - 9a
Hilgeroth A. Mini-Rev. Med. Chem. 2002, 2: 235Reference Ris Wihthout Link - 9b
Hilgeroth A.Lilie H. Eur. J. Med. Chem. 2003, 38: 495Reference Ris Wihthout Link - 10a
Misra A.Ganesh S.Shahiwala A.Shah SP. J. Pharm. Pharm. Sci. 2003, 6: 252Reference Ris Wihthout Link - 10b
Bodor N.Buchwald P. Drug Discovery Today 2002, 7: 766Reference Ris Wihthout Link - 10c
Prokai L.Prokai-Tatrai K.Bodor N. Med. Res. Rev. 2000, 20: 367Reference Ris Wihthout Link - For reviews of the chemistry of 1,4-dihydropyridines, see:
- 11a
Comins DL.O’Connor S. Adv. Heterocycl. Chem. 1988, 44: 199Reference Ris Wihthout Link - 11b
Kumar R.Chandra R. Adv. Heterocycl. Chem. 2001, 78: 269Reference Ris Wihthout Link - 11c
Lavilla R. J. Chem. Soc., Perkin Trans. 1 2002, 1141Reference Ris Wihthout Link - 11d
Christen DP. The Art of Drug SynthesisJohnson DS.Li JJ. John Wiley and Sons; New York: 2007. Chap. 11.Reference Ris Wihthout Link - 12a For
a review of the synthesis of substituted pyridines, see:
Henry GD. Tetrahedron 2004, 60: 6043Reference Ris Wihthout Link - 12b For an overview of more
recent methods, see:
Lieby-Muller F.Allais C.Constantieux T.Rodriguez J. Chem. Commun. 2008, 4207 ; and references thereinReference Ris Wihthout Link - 13 For a review of the use of 1,3-dicarbonyl
compounds in multicomponent processes, including the Hantzsch reaction, see:
Simon C.Constantieux T.Rodríguez J. Eur. J. Org. Chem. 2004, 4957 - For some dihydropyridine syntheses not directly related to the Hantzsch reaction, see:
- 14a
Geirsson JKF.Johannesdottir JF. J. Org. Chem. 1996, 61: 7320Reference Ris Wihthout Link - 14b
Evdokimov NM.Magedov IV.Kireev AS.Kornienko A. Org. Lett. 2006, 6: 899Reference Ris Wihthout Link - 14c
Sridharan V.Perumal PT.Avendaño C.Menéndez JC. Tetrahedron 2007, 63: 4407 ; for organocatalyzed versions of the same reaction, see references 14g and 14hReference Ris Wihthout Link - 14d
Bartoli G.Babiuch K.Bosco M.Carlone A.Galzerano P.Melchiorre P.Sambri L. Synlett 2007, 2897Reference Ris Wihthout Link - 14e
Singh L.Singh Ishar MP.Elango M.Subramanian V.Gupta V.Kanwal VP. J. Org. Chem. 2008, 73: 2224Reference Ris Wihthout Link - 14f
Li M.Zuo Z.Wen L.Wang S. J. Comb. Chem. 2008, 10: 436Reference Ris Wihthout Link - 14g
Franke PT.Johansen RL.Bertelsen S.Jørgensen KA. Chem. Asian J. 2008, 3: 216Reference Ris Wihthout Link - 14h
Kumar A.Maurya RA. Tetrahedron 2008, 64: 3477Reference Ris Wihthout Link - For some recent improvements of the Hantzsch dihydropyridine synthesis, see:
- 15a
Vanden Eynde JJ.Mayence A. Molecules 2003, 8: 381Reference Ris Wihthout Link - 15b
Kidwai M.Mohan R. Can. J. Chem. 2004, 82: 427Reference Ris Wihthout Link - 15c
Sharma GVM.Reddy KL.Lakshmi PS.Krishna PR. Synthesis 2006, 55Reference Ris Wihthout Link - 15d
Kumar A.Maurya RA. Tetrahedron 2007, 63: 1946Reference Ris Wihthout Link - 15e
Wang S.-X.Li Z.-Y.Zhang J.-C.Li J.-T. Ultrason. Sonochem. 2008, 15: 677Reference Ris Wihthout Link - 15f
Arumugan P.Perumal PT. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2008, 47: 1084Reference Ris Wihthout Link - For some recent examples of the use of this strategy, see:
- 16a
Carranco I.Díaz JL.Jiménez O.Lavilla R. Tetrahedron Lett. 2003, 44: 8449Reference Ris Wihthout Link - 16b
Lavilla R.Bernabeu MC.Carranco I.Díaz JL. Org. Lett. 2003, 5: 717Reference Ris Wihthout Link - 16c
Lavilla R.Carranco I.Díaz JL.Bernabeu MC. Mol. Diversity 2003, 6: 171Reference Ris Wihthout Link - 16d
Jiménez O.de la Rosa G.Lavilla R. Angew. Chem. Int. Ed. 2005, 44: 6521Reference Ris Wihthout Link - 16e
Masdeu C.Gómez E.Williams NAO.Lavilla R. Angew. Chem. Int. Ed. 2007, 46: 3043Reference Ris Wihthout Link - See, for instance:
- 17a
Zhu XQ.Zhao BJ.Cheng JP.
J. Org. Chem. 2000, 65: 8158Reference Ris Wihthout Link - 17b
Zhu XQ.Wang HY.Wang JS.Liu YC. J. Org. Chem. 2001, 66: 344Reference Ris Wihthout Link - 18
Sridharan V.Maiti S.Menéndez JC. Chem. Eur. J. 2009, 15: 4565
References and Notes
General experimental procedure: To
a solution of a suitable primary amine (1.1 mmol) and β-keto
ester (1 mmol) in anhydrous MeCN (5 mL) was added CAN (5 mol%).
The solution was stirred at room temperature for 30 minutes. To this
solution was added a suitable α,β-unsaturated
aldehyde (1.1 mmol) in EtOH (3 mmol). The reaction mixture was stirred
at room temperature for 1 h, diluted with CH2Cl2
(15
mL) and washed with water (3 × 5 mL). The organic layer
was dried over anhydrous Na2SO4 and concentrated
to dryness. The crude residue was dissolved in MeCN (10 mL) and
neutral, grade I activity Al2O3 (5 g) was
added. The suspension was heated under reflux for the time specified
in Table
[²]
. After
completion of the reaction (verified by NMR), the mixture was diluted
with CH2Cl2 and filtered through a layer of
Celite, which was thoroughly washed with boiling CH2Cl2 (50
mL, in several portions). The organic layer was washed with water
(5 mL), dried over anhydrous Na2SO4 and concentrated
to dryness. The crude residue was purified by column chromatography
on neutral Al2O3 (EtOAc-petroleum
ether, 98:2 containing 1% Et3N). Characterization data
for representative compounds 2 are given
below.
Ethyl 1-Butyl-2-methyl-1,4-dihydropyridine-3-carboxylate
(2a). Colorless viscous liquid. IR
(neat, NaCl): 2960, 2932, 2874, 1681, 1567, 1233, 1178, 1145, 1073
cm-¹. ¹H NMR (250
MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz,
3 H), 1.23 (t, J = 7.1
Hz, 3 H), 1.29-1.38 (m, 2 H), 1.44-1.56
(m, 2 H), 2.31 (s, 3 H), 3.1 (d, J = 3.5
Hz, 2 H), 3.2 (t, J = 7.2
Hz, 2 H), 4.05-4.13 (m, 2 H), 4.68-4.75
(m, 1 H), 5.67 (d, J = 7.9
Hz, 1 H). ¹³C NMR (62.9 MHz,
CDCl3): δ = 14.3, 14.9, 15.8, 20.3,
24.9, 32.7, 50.2, 59.6, 94.9, 104.2, 130.9, 150.9, 169.6. Anal.
Calcd for C13H21NO2 (223.3): C,
69.92; H, 9.48; N, 6.27; Found: C, 69.65; H, 9.23; N, 6.12.
Ethyl 1-Butyl-2,4-dimethyl-1,4-dihydropyridine-3-carboxylate
(2e). Colorless viscous liquid. IR (neat, NaCl): 2958, 2930,
2872, 1684, 1560, 1232, 1177, 1137, 1088
cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 0.92-0.98
(m, 6 H), 1.27 (t, J = 6.4
Hz, 3 H), 1.33-1.42 (m, 2 H), 1.48-1.59
(m, 2 H), 2.38 (s, 3 H), 3.11-3.23 (m,
1 H), 3.32-3.52 (m, 2 H), 4.07-4.20
(m, 2 H), 4.87 (dd, J = 7.4,
6.2 Hz, 1 H), 5.81 (d, J = 7.4
Hz, 1 H). ¹³C NMR (62.9 MHz,
CDCl3): δ = 14.3, 14.9, 16.0, 20.2,
25.3, 28.5, 32.8, 50.2, 59.5, 101.0, 109.2, 129.6, 149.3, 169.7.
Anal. Calcd for C14H23NO2 (237.3):
C, 70.85; H, 9.77; N, 5.90. Found: C, 70.57; H, 9.50; N, 6.00.
Ethyl 1-Butyl-2-methyl-4-phenyl-1,4-dihydropyridine-3-carboxylate
(2k). Light-yellow viscous liquid. IR (neat, NaCl): 2959, 2872,
1682, 1557, 1393, 1230, 1178, 1145, 1078 cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 0.99 (t, J = 7.3 Hz,
3 H), 1.13 (t, J = 7.1
Hz, 3 H), 1.31-1.46 (m, 2 H), 1.55-1.68
(m, 2 H), 2.49 (s, 3 H), 3.21-3.32 (m,
1 H), 3.44-3.56 (m, 1 H), 3.99 (q, J = 7.1 Hz,
2 H), 4.60 (d, J = 5.6
Hz, 1 H), 4.96 (dd, J = 5.6,
7.5 Hz, 1 H), 5.91 (d, J = 7.6
Hz, 1 H), 7.15-7.55 (m, 5 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 14.3, 14.7,
16.2, 20.1, 32.7, 40.5, 50.4, 59.5, 99.9, 108.2, 126.3, 127.7 (2 × C),
128.6 (2 × C), 129.3, 149.1, 149.7, 169.6. Anal. Calcd
for C19H25NO2 (299.4): C, 76.22;
H, 8.42; N, 4.68. Found: C, 75.98; H, 8.31; N, 4.23.