References and Notes
For some applications of the ‘privileged
scaffold’ concept in drug design, see:
<A NAME="RD11109ST-1A">1a</A>
Muller G.
Drug
Discovery Today
2003,
8:
681
<A NAME="RD11109ST-1B">1b</A>
DeSimone RW.
Currie KS.
Mitchell SA.
Darrow JW.
Pippin DA.
Comb. Chem. High Throughput
Screening
2004,
7:
473
<A NAME="RD11109ST-1C">1c</A>
Costantino L.
Barlocco D.
Curr. Med. Chem.
2006,
13:
65
<A NAME="RD11109ST-1D">1d</A>
Shelat
AA.
Kiplin Guy R.
Nature
Chem. Biol.
2007,
3:
442
<A NAME="RD11109ST-2">2</A>
Evans BE.
Rittle KE.
Bock MG.
DiPardo RM.
Freidinger RM.
Whitter WL.
Lundell GF.
Verber
DF.
Anderson PS.
Chang RSL.
Lotti VJ.
Cerino DH.
Chen TB.
Kling PJ.
Kunkel KA.
Springer
JP.
Hirshfield J.
J. Med. Chem.
1998,
31:
2235
For selected reviews, see:
<A NAME="RD11109ST-3A">3a</A>
Triggle DJ.
Cell. Mol. Neurobiol.
2003,
23:
293
<A NAME="RD11109ST-3B">3b</A>
Ohashi K.
Ebihara A.
Cardiovasc. Drug Rev.
2007,
14:
1
<A NAME="RD11109ST-3C">3c</A>
Epstein BJ.
Vogel K.
Palmer BF.
Drugs
2007,
67:
1309
<A NAME="RD11109ST-3D">3d</A>
Fagard RH.
J. Clin. Basic Cardiol.
1999,
2:
163
<A NAME="RD11109ST-4">4</A>
Vergouwen MD.
Vermeulen M.
de Haan RJ.
Levi M.
Roos YB.
J. Cereb. Blood Flow Metab.
2007,
27:
1293
<A NAME="RD11109ST-5">5</A>
Straub T.
Boesenberg C.
Gekeler V.
Boege F.
Biochemistry
1997,
36:
10777
<A NAME="RD11109ST-6">6</A>
Donkor IO.
Zhou X.
Schmidt J.
Agrawal KC.
Kishore V.
Bioorg.
Med. Chem.
1998,
6:
563
<A NAME="RD11109ST-7">7</A>
Kuzmin A.
Semenova S.
Ramsey NF.
Zvartau EE.
Van Ree JM.
Eur. J. Pharmacol.
1996,
295:
19
For selected reviews on MDR modulators,
see:
<A NAME="RD11109ST-8A">8a</A>
Teodori E.
Dei S.
Scapecchi S.
Gualtieri F.
Farmaco
2002,
57:
385
<A NAME="RD11109ST-8B">8b</A>
Avendaño C.
Menéndez JC.
Curr.
Med. Chem.
2002,
9:
159
<A NAME="RD11109ST-8C">8c</A>
Robert J.
Jarry C.
J. Med. Chem.
2003,
46:
4805
<A NAME="RD11109ST-8D">8d</A>
Avendaño C.
Menéndez JC.
Med.
Chem. Rev. Online
2004,
1:
419
<A NAME="RD11109ST-8E">8e</A>
Boumendjel A.
Baubichon-Cortay H.
Trompier D.
Perrotton T.
Di Pietro A.
Med. Res.
Rev.
2005,
25:
453
<A NAME="RD11109ST-9A">9a</A>
Hilgeroth A.
Mini-Rev. Med. Chem.
2002,
2:
235
<A NAME="RD11109ST-9B">9b</A>
Hilgeroth A.
Lilie H.
Eur. J. Med. Chem.
2003,
38:
495
<A NAME="RD11109ST-10A">10a</A>
Misra A.
Ganesh S.
Shahiwala A.
Shah SP.
J.
Pharm. Pharm. Sci.
2003,
6:
252
<A NAME="RD11109ST-10B">10b</A>
Bodor N.
Buchwald P.
Drug Discovery Today
2002,
7:
766
<A NAME="RD11109ST-10C">10c</A>
Prokai L.
Prokai-Tatrai K.
Bodor N.
Med.
Res. Rev.
2000,
20:
367
For reviews of the chemistry of
1,4-dihydropyridines, see:
<A NAME="RD11109ST-11A">11a</A>
Comins DL.
O’Connor S.
Adv.
Heterocycl. Chem.
1988,
44:
199
<A NAME="RD11109ST-11B">11b</A>
Kumar R.
Chandra R.
Adv. Heterocycl. Chem.
2001,
78:
269
<A NAME="RD11109ST-11C">11c</A>
Lavilla R.
J.
Chem. Soc., Perkin Trans. 1
2002,
1141
<A NAME="RD11109ST-11D">11d</A>
Christen DP.
The Art of Drug Synthesis
Johnson DS.
Li JJ.
John Wiley and Sons;
New
York:
2007.
Chap. 11.
<A NAME="RD11109ST-12A">12a</A> For
a review of the synthesis of substituted pyridines, see:
Henry GD.
Tetrahedron
2004,
60:
6043
<A NAME="RD11109ST-12B">12b</A> For an overview of more
recent methods, see:
Lieby-Muller F.
Allais C.
Constantieux T.
Rodriguez J.
Chem. Commun.
2008,
4207 ;
and references therein
<A NAME="RD11109ST-13">13</A> For a review of the use of 1,3-dicarbonyl
compounds in multicomponent processes, including the Hantzsch reaction, see:
Simon C.
Constantieux T.
Rodríguez J.
Eur. J. Org. Chem.
2004,
4957
For some dihydropyridine syntheses
not directly related to the Hantzsch reaction, see:
<A NAME="RD11109ST-14A">14a</A>
Geirsson JKF.
Johannesdottir JF.
J.
Org. Chem.
1996,
61:
7320
<A NAME="RD11109ST-14B">14b</A>
Evdokimov NM.
Magedov IV.
Kireev AS.
Kornienko A.
Org.
Lett.
2006,
6:
899
<A NAME="RD11109ST-14C">14c</A>
Sridharan V.
Perumal PT.
Avendaño C.
Menéndez JC.
Tetrahedron
2007,
63:
4407 ; for organocatalyzed versions of the same reaction,
see references 14g and 14h
<A NAME="RD11109ST-14D">14d</A>
Bartoli G.
Babiuch K.
Bosco M.
Carlone A.
Galzerano P.
Melchiorre P.
Sambri L.
Synlett
2007,
2897
<A NAME="RD11109ST-14E">14e</A>
Singh L.
Singh Ishar MP.
Elango M.
Subramanian V.
Gupta V.
Kanwal VP.
J.
Org. Chem.
2008,
73:
2224
<A NAME="RD11109ST-14F">14f</A>
Li M.
Zuo Z.
Wen L.
Wang S.
J. Comb. Chem.
2008,
10:
436
<A NAME="RD11109ST-14G">14g</A>
Franke PT.
Johansen RL.
Bertelsen S.
Jørgensen KA.
Chem.
Asian J.
2008,
3:
216
<A NAME="RD11109ST-14H">14h</A>
Kumar A.
Maurya RA.
Tetrahedron
2008,
64:
3477
For some recent improvements of
the Hantzsch dihydropyridine synthesis, see:
<A NAME="RD11109ST-15A">15a</A>
Vanden Eynde JJ.
Mayence A.
Molecules
2003,
8:
381
<A NAME="RD11109ST-15B">15b</A>
Kidwai M.
Mohan R.
Can. J. Chem.
2004,
82:
427
<A NAME="RD11109ST-15C">15c</A>
Sharma GVM.
Reddy KL.
Lakshmi PS.
Krishna PR.
Synthesis
2006,
55
<A NAME="RD11109ST-15D">15d</A>
Kumar A.
Maurya RA.
Tetrahedron
2007,
63:
1946
<A NAME="RD11109ST-15E">15e</A>
Wang S.-X.
Li Z.-Y.
Zhang J.-C.
Li J.-T.
Ultrason. Sonochem.
2008,
15:
677
<A NAME="RD11109ST-15F">15f</A>
Arumugan P.
Perumal PT.
Indian J. Chem.,
Sect. B: Org. Chem. Incl. Med. Chem.
2008,
47:
1084
For some recent examples of the
use of this strategy, see:
<A NAME="RD11109ST-16A">16a</A>
Carranco I.
Díaz JL.
Jiménez O.
Lavilla R.
Tetrahedron
Lett.
2003,
44:
8449
<A NAME="RD11109ST-16B">16b</A>
Lavilla R.
Bernabeu MC.
Carranco I.
Díaz JL.
Org. Lett.
2003,
5:
717
<A NAME="RD11109ST-16C">16c</A>
Lavilla R.
Carranco I.
Díaz JL.
Bernabeu MC.
Mol.
Diversity
2003,
6:
171
<A NAME="RD11109ST-16D">16d</A>
Jiménez O.
de la Rosa G.
Lavilla R.
Angew. Chem. Int. Ed.
2005,
44:
6521
<A NAME="RD11109ST-16E">16e</A>
Masdeu C.
Gómez E.
Williams NAO.
Lavilla R.
Angew.
Chem. Int. Ed.
2007,
46:
3043
See, for instance:
<A NAME="RD11109ST-17A">17a</A>
Zhu XQ.
Zhao BJ.
Cheng JP.
J. Org. Chem.
2000,
65:
8158
<A NAME="RD11109ST-17B">17b</A>
Zhu XQ.
Wang HY.
Wang JS.
Liu YC.
J.
Org. Chem.
2001,
66:
344
<A NAME="RD11109ST-18">18</A>
Sridharan V.
Maiti S.
Menéndez JC.
Chem. Eur. J.
2009,
15:
4565
<A NAME="RD11109ST-19">19</A>
General experimental procedure: To
a solution of a suitable primary amine (1.1 mmol) and β-keto
ester (1 mmol) in anhydrous MeCN (5 mL) was added CAN (5 mol%).
The solution was stirred at room temperature for 30 minutes. To this
solution was added a suitable α,β-unsaturated
aldehyde (1.1 mmol) in EtOH (3 mmol). The reaction mixture was stirred
at room temperature for 1 h, diluted with CH2Cl2
(15
mL) and washed with water (3 × 5 mL). The organic layer
was dried over anhydrous Na2SO4 and concentrated
to dryness. The crude residue was dissolved in MeCN (10 mL) and
neutral, grade I activity Al2O3 (5 g) was
added. The suspension was heated under reflux for the time specified
in Table
[²]
. After
completion of the reaction (verified by NMR), the mixture was diluted
with CH2Cl2 and filtered through a layer of
Celite, which was thoroughly washed with boiling CH2Cl2 (50
mL, in several portions). The organic layer was washed with water
(5 mL), dried over anhydrous Na2SO4 and concentrated
to dryness. The crude residue was purified by column chromatography
on neutral Al2O3 (EtOAc-petroleum
ether, 98:2 containing 1% Et3N). Characterization data
for representative compounds 2 are given
below.
Ethyl 1-Butyl-2-methyl-1,4-dihydropyridine-3-carboxylate
(2a). Colorless viscous liquid. IR
(neat, NaCl): 2960, 2932, 2874, 1681, 1567, 1233, 1178, 1145, 1073
cm-¹. ¹H NMR (250
MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz,
3 H), 1.23 (t, J = 7.1
Hz, 3 H), 1.29-1.38 (m, 2 H), 1.44-1.56
(m, 2 H), 2.31 (s, 3 H), 3.1 (d, J = 3.5
Hz, 2 H), 3.2 (t, J = 7.2
Hz, 2 H), 4.05-4.13 (m, 2 H), 4.68-4.75
(m, 1 H), 5.67 (d, J = 7.9
Hz, 1 H). ¹³C NMR (62.9 MHz,
CDCl3): δ = 14.3, 14.9, 15.8, 20.3,
24.9, 32.7, 50.2, 59.6, 94.9, 104.2, 130.9, 150.9, 169.6. Anal.
Calcd for C13H21NO2 (223.3): C,
69.92; H, 9.48; N, 6.27; Found: C, 69.65; H, 9.23; N, 6.12.
Ethyl 1-Butyl-2,4-dimethyl-1,4-dihydropyridine-3-carboxylate
(2e). Colorless viscous liquid. IR (neat, NaCl): 2958, 2930,
2872, 1684, 1560, 1232, 1177, 1137, 1088
cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 0.92-0.98
(m, 6 H), 1.27 (t, J = 6.4
Hz, 3 H), 1.33-1.42 (m, 2 H), 1.48-1.59
(m, 2 H), 2.38 (s, 3 H), 3.11-3.23 (m,
1 H), 3.32-3.52 (m, 2 H), 4.07-4.20
(m, 2 H), 4.87 (dd, J = 7.4,
6.2 Hz, 1 H), 5.81 (d, J = 7.4
Hz, 1 H). ¹³C NMR (62.9 MHz,
CDCl3): δ = 14.3, 14.9, 16.0, 20.2,
25.3, 28.5, 32.8, 50.2, 59.5, 101.0, 109.2, 129.6, 149.3, 169.7.
Anal. Calcd for C14H23NO2 (237.3):
C, 70.85; H, 9.77; N, 5.90. Found: C, 70.57; H, 9.50; N, 6.00.
Ethyl 1-Butyl-2-methyl-4-phenyl-1,4-dihydropyridine-3-carboxylate
(2k). Light-yellow viscous liquid. IR (neat, NaCl): 2959, 2872,
1682, 1557, 1393, 1230, 1178, 1145, 1078 cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 0.99 (t, J = 7.3 Hz,
3 H), 1.13 (t, J = 7.1
Hz, 3 H), 1.31-1.46 (m, 2 H), 1.55-1.68
(m, 2 H), 2.49 (s, 3 H), 3.21-3.32 (m,
1 H), 3.44-3.56 (m, 1 H), 3.99 (q, J = 7.1 Hz,
2 H), 4.60 (d, J = 5.6
Hz, 1 H), 4.96 (dd, J = 5.6,
7.5 Hz, 1 H), 5.91 (d, J = 7.6
Hz, 1 H), 7.15-7.55 (m, 5 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 14.3, 14.7,
16.2, 20.1, 32.7, 40.5, 50.4, 59.5, 99.9, 108.2, 126.3, 127.7 (2 × C),
128.6 (2 × C), 129.3, 149.1, 149.7, 169.6. Anal. Calcd
for C19H25NO2 (299.4): C, 76.22;
H, 8.42; N, 4.68. Found: C, 75.98; H, 8.31; N, 4.23.