Synlett 2009(8): 1351-1352  
DOI: 10.1055/s-0029-1216645
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Pyridinium Hydrobromide Perbromide: A Versatile Reagent in Organic Synthesis

Shu-Hong Yang
The College of Chemistry & Material Science, Hebei Normal University, 050016 Shijiazhuang, P. R. of China
e-Mail: yang_shuhong@126.com;
Further Information

Publication History

Publication Date:
07 May 2009 (online)

Introduction

Pyridinium hydrobromide perbromide (PHPB) has been extensively used in organic synthesis as a selective brominating reagent for alkenes, [¹-5] alkanes, [6] arenes, [7] ketones, [7] [8] anilines, [9] aromatic ethers, [¹0] N-heterocycles, [¹¹] and oxidi­zing reagents. [¹²] [¹³] PHPB forms red prismatic crystals and its melting point is at 134 ˚C. Further, it is easy to handle, stable and environmentally safe. [¹4] PHPB has been used for regioselective heterocyclization of ortho-cyclohexenyl phenols [¹5] and ipsobromodeformylation in o-hydroxy and o-methoxy substituted aromatic aldehydes. [¹6] It was also found to be a useful catalyst for the chemoselective deprotection of primary TBS and TES ethers, [¹7] hydrolysis of thioacetals, [¹8] and hydroamination of activated styrenes. [¹9]

Pyridinium hydrobromide perbromide is commercially available, but it can be readily prepared by adding one mole of bromine to one mole of pyridine in 48% hydrobromic acid solution. [¹4]

    References

  • 1 Li C. Prichard MN. Korba BE. Drach JC. Zemlicka J. Bioorg. Med. Chem.  2008,  16:  2148 
  • 2 Robins MJ. Miranda K. Rajwanshi VK. Peterson MA. Andrei G. Snoeck R. De Clercq E. Balzarini J. J. Med. Chem.  2006,  49:  391 
  • 3 Díaz-Sánchez BR. Iglesias-Arteaga MA. Melgar-Fernández R. Juaristi E. J. Org. Chem.  2007,  72:  4822 
  • 4 Sasaki S.-i. Mizoguchi T. Tamiaki H. J. Org. Chem.  2007,  72:  4566 
  • 5 Mphahlele MJ. Moekwa TB. Org. Biomol. Chem.  2005,  3:  2469 
  • 6 Shandura MP. Poronik YM. Kovtun YP. Dyes Pigments  2007,  73:  25 
  • 7 Levin Y. Hamza K. Abu-Reziq R. Blum J. Eur. J. Org. Chem.  , 
  • 8 Cabaj JE. Kairys D. Benson TR. Org. Process Res. Dev.  2007,  11:  378 
  • 9 Reeves WP. King RM. Synth. Commun.  1993,  23:  855 
  • 10 Reeves WP. Lu CV. Schulmeier B. Jonas L. Hatlevik O. Synth. Commun.  1998,  28:  499 
  • 11 Miki Y. Umemoto M. Nakamura M. Hibino H. Ohkita N. Kato A. Aoki Y. Heterocycles  2006,  68:  1893 
  • 12 Ali MH. Stricklin S. Synth. Commun.  2006,  36:  1779 
  • 13 Aneja M. Kothari S. Banerji KK. J. Phys. Org. Chem.  2001,  14:  650 
  • 14 Djerassi C. Scholz CR. J. Am. Chem. Soc.  1948,  70:  417 
  • 15 Majumdar KC. Kundu AK. Can. J. Chem.  1995,  73:  1727 
  • 16 Córdoba R. Plumet J. Tetrahedron Lett.  2002,  43:  9303 
  • 17 Martinez-Solorio D. Jennings MP. Tetrahedron Lett.  2008,  49:  5175 
  • 18 Bates GS. O’Doherty J. J. Org. Chem.  1981,  46:  1745 
  • 19 Talluri SK. Sudalai A. Org. Lett.  2005,  7:  855 
  • 20 Lakouraj MM. Ghodrati K. Phosphorus Sulfur Silicon  2008,  183:  1432 
  • 21 Sayama S. Onami T. Synlett  2004,  2739 
  • 22 Aoyama T. Takido T. Kodomari M. Tetrahedron Lett.  2005,  46:  1989 
  • 23 Lakouraj MM. Ghodrati K. Monatsh. Chem.  2008,  139:  549 
  • 24 Markovic R. Baranac M. Dzambaski Z. Heterocycles  2004,  63:  851 
  • 25 Sayama S. Synlett  2006,  1479 
  • 26 Ali SI. Nikalje MD. Sudalai A. Org. Lett.  1999,  1:  705