Abstract
The direct esterification of aldehydes and alcohols was carried out with pyridinium
hydrobromide perbromide in water at room temperature. A variety of aldehydes were
converted to respective ester derivatives with alcohols such as methanol, 1,2-ethanediol,
1,3-propanediol. Further, a variety of aliphatic alcohols were also converted to the
corresponding Tishchenko-like dimeric esters in good yields under the same reaction
conditions.
Key words
esterification - water - pyridinium hydrobromide perbromide - aldehyde - alcohol
References
<A NAME="RU24304ST-1A">1a </A>
Larock RC. In
Comprehensive Organic Transformation
Wiley-VCH;
New York:
1999.
<A NAME="RU24304ST-1B">1b </A>
Ho T.-L.
Fiesers’ Reagents for Organic Synthesis
Vol. 1-21:
Wiley;
New York:
1967-2003.
<A NAME="RU24304ST-1C">1c </A>
Naik S.
Gopinath R.
Goswami M.
Patel BK.
Org. Biomol. Chem.
2004,
2:
1670
<A NAME="RU24304ST-1D">1d </A>
Gopinath R.
Haque SK.
Patel BK.
J. Org. Chem.
2002,
67:
5842
<A NAME="RU24304ST-1E">1e </A>
Naik S.
Gopinath R.
Patel BK.
Tetrahedron Lett.
2001,
42:
7679
<A NAME="RU24304ST-1F">1f </A>
Gopinath R.
Patel BK.
Org. Lett.
2000,
2:
4177
<A NAME="RU24304ST-1G">1g </A>
Bora U.
Bose G.
Chaudhuri MK.
Dhar SS.
Gopinath R.
Khan AT.
Patel BK.
Org. Lett.
2000,
2:
247
<A NAME="RU24304ST-2A">2a </A>
Dessolin J.
Biot C.
Davioud-Charvet E.
J. Org. Chem.
2001,
66:
5616
<A NAME="RU24304ST-2B">2b </A>
Chaudhuri MK.
Khan AT.
Patel BK.
Dey D.
Kharmawophlang W.
Lakshmiprabha TR.
Mandal GC.
Tetrahedron Lett.
1998,
39:
8163
<A NAME="RU24304ST-2C">2c </A>
Collado IG.
Galan RH.
Massanet GM.
Alonso MS.
Tetrahedron
1994,
50:
6433
<A NAME="RU24304ST-2D">2d </A>
Baraldi PG.
Bazzanini R.
Manfredini S.
Simoni D.
Robins MJ.
Tetrahedron Lett.
1993,
34:
3177
<A NAME="RU24304ST-2E">2e </A>
Reeves WP.
King RM.
Synth. Commun.
1993,
23:
855
<A NAME="RU24304ST-2F">2f </A>
Husstedt U.
Schafer HJ.
Synthesis
1979,
966
<A NAME="RU24304ST-3A">3a </A>
Qian G.
Zhao R.
Ji D.
Lu G.
Qi Y.
Suo J.
Chem. Lett.
2004,
33:
834
<A NAME="RU24304ST-3B">3b </A>
Gopinath R.
Barkakaty B.
Talukdar B.
Patel BK.
J. Org. Chem.
2003,
68:
2944
<A NAME="RU24304ST-3C">3c </A>
Sharghi H.
Sarvari MH.
J. Org. Chem.
2003,
68:
4096
<A NAME="RU24304ST-3D">3d </A>
Gopinath R.
Patel BK.
Org. Lett.
2000,
2:
577
<A NAME="RU24304ST-3E">3e </A>
Espeson JH.
Zhu Z.
Zauche TH.
J. Org. Chem.
1999,
64:
1191
<A NAME="RU24304ST-3F">3f </A>
Gregg PJ.
Olsson L.
Oscarson S.
J. Org. Chem.
1995,
60:
2200
<A NAME="RU24304ST-3G">3g </A>
Stowell JC.
Ham BM.
Esslinger MA.
Duplantier AJ.
J. Org. Chem.
1989,
54:
1212
<A NAME="RU24304ST-3H">3h </A>
Okimoto M.
Chiba T.
J. Org. Chem.
1988,
53:
218
<A NAME="RU24304ST-3I">3i </A>
Wilson SR.
Tofigh S.
Misra RN.
J. Org. Chem.
1982,
47:
1360
<A NAME="RU24304ST-3J">3j </A>
Stevens RV.
Chapman KT.
Stubbs CA.
Tam WW.
Albizati KF.
Tetrahedron Lett.
1982,
23:
4647
<A NAME="RU24304ST-3K">3k </A>
Nwaukwa SO.
Keehn PM.
Tetrahedron Lett.
1982,
23:
35
<A NAME="RU24304ST-3L">3l </A>
Pinnick HW.
Lajis NH.
J. Org. Chem.
1978,
43:
371
<A NAME="RU24304ST-3M">3m </A>
Sundararaman P.
Walker EC.
Djerassi C.
Tetrahedron Lett.
1978,
1627
<A NAME="RU24304ST-3N">3n </A>
Ogawa T.
Matsui M.
J. Am. Chem. Soc.
1976,
98:
1629
<A NAME="RU24304ST-3O">3o </A>
Corey EJ.
Gilman NW.
Ganem BE.
J. Am. Chem. Soc.
1968,
90:
5616
<A NAME="RU24304ST-4">4 </A>
4-Methylbenzoic acid was recovered in 88% yield at 2.0 molar equiv of PHPB and 16
molar equiv of ethylene glycol over 4-methylbenzoic acid in H2 O for 14 h.
<A NAME="RU24304ST-5A">5a </A>
Saitoh K.
Shiina I.
Mukaiyama T.
Chem. Lett.
1998,
679
<A NAME="RU24304ST-5B">5b </A>
Brinchi L.
Germani R.
Savelli G.
Tetrahedron Lett.
2003,
44:
6583
<A NAME="RU24304ST-5C">5c </A>
Zander N.
Gerhardt J.
Frank R.
Tetrahedron Lett.
2003,
44:
6557
<A NAME="RU24304ST-5D">5d </A>
Enholm EJ.
Bhardawaj A.
Tetrahedron Lett.
2003,
44:
3763
<A NAME="RU24304ST-5E">5e </A>
Gacem B.
Jenner G.
Tetrahedron Lett.
2003,
44:
1391
<A NAME="RU24304ST-5F">5f </A>
Pan W.-B.
Chang F.-R.
Wei L.-M.
Wu M.-J.
Wu Y.-C.
Tetrahedron Lett.
2003,
44:
331
<A NAME="RU24304ST-5G">5g </A>
Jang DO.
Cho DH.
Kim J.-G.
Synth. Commun.
2003,
33:
2885
<A NAME="RU24304ST-5H">5h </A>
Karade NN.
Shirodkar SG.
Potrekar RA.
Karade HN.
Synth. Commun.
2004,
34:
391
<A NAME="RU24304ST-6A">6a </A>
Reis MG.
Faria AD.
Amaral MCE.
Marsaioli AJ.
Tetrahedron Lett.
2003,
44:
8519
<A NAME="RU24304ST-6B">6b </A>
Ueki T.
Morimoto Y.
Kinoshita T.
J. Chem. Soc., Chem. Commun.
2001,
1820
<A NAME="RU24304ST-6C">6c </A>
Hisamatsu Y.
Goto N.
Hasegawa K.
Shigemori H.
Tetrahedron Lett.
2003,
44:
5553
<A NAME="RU24304ST-6D">6d </A>
Schulz T.
Eicher T.
Synthesis
2003,
1253
<A NAME="RU24304ST-7">7 </A>
The oxidation of 2-ethyl-1,3-hexanediol (18 ) containing both secondary and primary hydroxyl groups, was carried out with 2.0
molar equiv of PHPB over 18 in H2 O at r.t. for 75 h. Only the secondary 3-hydroxyl group of 18 was selectively oxidized to give hydroxyketone 19 in 82% yield (Table
[6 ]
, run 6).
<A NAME="RU24304ST-8">8 </A>
Typical procedure for the Esterification of Iso
butyraldehyde (
4) and Dodecanol:
To a solution of PHPB (320 mg, 1.00 mmol) in H2 O (8 mL) were added 4 (36 mg, 0.50 mmol) and dodecanol (93 mg, 0.50 mmol). After stirring for 14 h at r.t.,
the reaction mixture was treated with 0.5 M aq Na2 S2 O3 and extracted with EtOAc. The organic layer was washed with 0.5 M aq Na2 S2 O3 , successively sat. aq NaCl, and dried over MgSO4 . After removal of the solvent in vacuo, the residue was purified by column chromatography
on silica gel (Wakogel C-200) with CCl4 and CHCl3 (3:1 v/v). Ester 4a (109 mg, 0.42 mmol) was obtained in 84% yield.
<A NAME="RU24304ST-9">9 </A>
Yunker MB.
Fraser-Reid B.
J. Chem. Soc., Chem. Commun.
1975,
61
<A NAME="RU24304ST-10">10 </A>
Guo Z.
Padmakumar R.
Hollingsworth RI.
Radhakrishnan KV.
Nandakumar MV.
Fraser-Reid B.
Synlett
2003,
1067
<A NAME="RU24304ST-11">11 </A>
Ermolenko L.
Sasaki NA.
Potier P.
Synlett
2001,
1565
<A NAME="RU24304ST-12">12 </A>
Kageyama T.
Ueno Y.
Okawara M.
Synthesis
1983,
815
<A NAME="RU24304ST-13">13 </A>
Masuyama Y.
Takahashi M.
Kurusu Y.
Tetrahedron Lett.
1984,
25:
4417
<A NAME="RU24304ST-14">14 </A>
Dauben WG.
Warshawsky AM.
Synth. Commun.
1988,
18:
1323
<A NAME="RU24304ST-15">15 </A>
β-Phenylethylalcohol was recovered unchanged in 90% yield at a molar ratio of β-phenylethylalcohol,
PHPB, pyridine (1:2:2) in H2 O for 18 h.
<A NAME="RU24304ST-16">16 </A>
Tanaka H.
Kawakami Y.
Goto K.
Kuroboshi M.
Tetrahedron Lett.
2001,
42:
445
<A NAME="RU24304ST-17">17 </A>
Shaabani A.
Lee DG.
Tetrahedron Lett.
2001,
42:
5833
<A NAME="RU24304ST-18">18 </A>
Morimoto T.
Hirano M.
Iwasaki K.
Ishikawa T.
Chem. Lett.
1994,
53
<A NAME="RU24304ST-19">19 </A>
Okimoto M.
Nagata Y.
Sueda S.
Takahashi Y.
Synth. Commun.
2004,
34:
281
<A NAME="RU24304ST-20">20 </A>
Hiegel GA.
Gilly CB.
Synth. Commun.
2003,
33:
2003
<A NAME="RU24304ST-21">21 </A>
Typical Procedure for the Dimeric Esterification of Dodecanol (
12): To a solution of PHPB (160 mg, 0.50 mmol) in H2 O (8 mL) was added 12 (46 mg, 0.25 mmol). After stirring for 13 h at r.t., the reaction mixture was treated
with 0.5 M aq Na2 S2 O3 and extracted with EtOAc. The organic layer was washed with 0.5 M aq Na2 S2 O3 , successively sat. aq NaCl, and_dried over MgSO4 . After removal of the solvent in vacuo, the residue was purified by column chromatography
on silica gel (Wakogel C-200) with CCl4 . Dimeric ester 12a (44 mg, 0.12 mmol) was obtained in 95% yield.