RSS-Feed abonnieren
DOI: 10.1055/a-2744-6831
All-step Mechanochemical Approach for the Rapid and Solventless Synthesis of Boscalid
Autor*innen
Gefördert durch: Japan Science and Technology Corporation JPMJCR19R1, JPMJFR201I
The authors gratefully acknowledge financial support from JSPS KAKENHI grants 24H00453 (to K.K.), 24H01050 (to K.K.), 24H01832 (to K.K.), 22H00318 (to H.I.), and 22K18333 (to H.I.), as well as from the JST via CREST grant JPMJCR19R1 (to H.I.) and FOREST grant JPMJFR201I (to K.K.). The authors are also grateful to the Institute for Chemical Reaction Design and Discovery (ICReDD), established by the World Premier International Research Initiative (WPI), MEXT, Japan.
Gefördert durch: Japan Society for the Promotion of Science 22H00318,22K18333,24H00453,24H01050,24H01832

Abstract
Boscalid, the active ingredient in various fungicides used in large quantities worldwide, is traditionally synthesized using solution-based methods that require substantial quantities of reaction solvents and prolonged reaction times, highlighting opportunities for improvement in waste reduction, time efficiency, and energy consumption. Herein, we report a solventless and rapid synthesis of Boscalid via an all-step mechanochemical reaction. This synthetic route comprises three steps: Suzuki–Miyaura cross-coupling, zinc-mediated Béchamp reduction, and amidation with 2-chloronicotinyl chloride. Each mechanochemical reaction proceeded rapidly, and the total reaction time was significantly shorter than that of previous methods. Notably, all synthetic operations can be carried out without an inert gas atmosphere or large amounts of solvent, both of which are required under conventional solution-based conditions. Furthermore, gram-scale synthesis was successfully achieved without any yield loss at each step, highlighting the potential scalability of this protocol.
Keywords
Mechanochemistry - Ball milling - Suzuki–Miyaura coupling - Boscalid - Mechanochemical synthesisPublikationsverlauf
Eingereicht: 23. September 2025
Angenommen nach Revision: 11. November 2025
Accepted Manuscript online:
11. November 2025
Artikel online veröffentlicht:
02. Januar 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a James SL, Adams CJ, Bolm C. et al. Chem Soc Rev 2012; 41: 413
- 1b Wang G-W. Chem Soc Rev 2013; 42: 7668
- 1c Do J-L, Friščić T. ACS Cent Sci 2017; 3: 13
- 1d Hernández JG, Bolm C. J Org Chem 2017; 82: 4007
- 1e Métro T-X, Martinez J, Lamaty F. ACS Sustainable Chem Eng 2017; 5: 9599
- 1f Achar TK, Bose A, Mal P. Beilstein J Org Chem 2017; 13: 1907
- 1g Eguaogie O, Vyle JS, Conlon PF, Gîlea MA, Liang Y. Beilstein J Org Chem 2018; 14: 955
- 1h Howard JL, Cao Q, Browne DL. Chem Sci 2018; 9: 3080
- 1i Andersen J, Mack J. Green Chem 2018; 20: 1435
- 1j Bolm C, Hernández JG. Angew Chem Int Ed 2019; 58: 3285
- 1k Friščić T, Mottillo C, Titi HM. Angew Chem Int Ed 2020; 59: 1018
- 1l Kubota K, Ito H. Trends Chem 2020; 2: 1066
- 1m Porcheddu A, Colacino E, De Luca L, Delogu F. ACS Catal 2020; 10: 8344
- 1n Leitch JA, Browne DL. Chem Eur J 2021; 27: 9721
- 1o Ardila-Fierro KJ, Hernández JG. ChemSusChem 2021; 14: 2145
- 1p Martinez V, Stolar T, Karadeniz B, Brekalo I, Užarević K. Nat Rev Chem 2023; 7: 51
- 1q Kubota K. Bull Chem Soc Jpn 2023; 96: 913
- 1r Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Chem Soc Rev 2023; 52: 6680
- 1s Atapalkar RS, Kulkarni AA. React Chem Eng 2024; 9: 10
- 1t Reynes JF, Leon F, García F. ACS Org Inorg Au 2024; 4: 432
- 1u Narayanan NK, Schnürch M. ChemCatChem 2025; 17: e00457
- 2a Kubota K, Seo T, Hasegawa S, Ito H. Nat Commun 2019; 10: 111
- 2b Seo T, Ishiyama T, Kubota K, Ito H. Chem Sci 2019; 10: 8202
- 2c Kubota K, Pang Y, Miura A, Ito H. Science 2019; 366: 1500
- 2d Seo T, Kubota K, Ito H. J Am Chem Soc 2020; 142: 9884
- 2e Pang Y, Lee J, Kubota K, Ito H. Angew Chem Int Ed 2020; 59: 22570
- 2f Seo T, Toyoshima N, Kubota K, Ito H. J Am Chem Soc 2021; 143: 6165
- 2g Kubota K, Toyoshima N, Miura D. et al. Angew Chem Int Ed 2021; 60: 16003
- 2h Takahashi R, Hu A, Gao P. et al. Nat Commun 2021; 12: 6691
- 2i Seo T, Kubota K, Ito H. Angew Chem Int Ed 2023; 62: e202311531
- 2j Seo T, Kubota K, Ito H. J Am Chem Soc 2023; 145: 6823
- 2k Kubota K, Jiang J, Kamakura Y. et al. J Am Chem Soc 2024; 146: 1062
- 2l Kubota K, Nagao A, Ito H. RSC Mechanochem. 2025; 2: 389
- 3a Petry N, Luttringer F, Bantreil X, Lamaty F. Faraday Discuss 2023; 241: 114
- 3b Jaśkowska J, Drabczyk AK, Michorczyk P. et al. Catalysts 2022; 12: 464
- 3c Bhattacherjee D, Kovalev IS, Kopchuk DS. et al. Molecules 2022; 27: 7784
- 3d Canale V, Kamiński M, Trybała W. et al. ACS Sustain Chem Eng 2023; 11: 16156
- 3e Nikonovich T, Jarg T, Martõnova J. et al. RSC Mechanochem 2024; 1: 189
- 3f Colacino E, Dayaker G, Morère A, Friščić T. J Chem Educ 2019; 96: 766
- 3g Yuan Y, Wang L, Porcheddu A, Colacino E, Solin N. ChemSusChem 2022; 15: e202102097
- 3h Bento O, Luttringer F, Dine TME, Pétry N, Bantreil X, Lamaty F. Eur J Org Chem 2022; e202101516
- 3i Haneef J, Ali S. Sustain Chem Pharm 2025; 45: 102044
- 3j Leitão EPT. RSC Sustainability 2024; 2: 3655
- 3k Hu HC, Yu SY, Tsai YH. et al. Org Biomol Chem 2024; 22: 2620
- 3l Tan D, Loots L, Friščić T. Chem Commun 2016; 52: 7760
- 3m Colacino E, Porcheddu A, Charnay C, Delogu F. React Chem Eng 2019; 4: 1179
- 4a Mayer H, Golsch D, Isak H, Schröder J. US 7241896B2 2007
- 4b Eiken K, Goetz N, Harreus A, Ammermann E, Lorenz G, Rang H. US005589493 1996
- 5 Xiao CL, Boal RJ. Plant Dis 2009; 93: 185
- 6 Torborg C, Beller M. Adv Synth Catal 2009; 351: 3027
- 7a Drageset A, Elumalai V, Bjørsvik HR. React Chem Eng 2018; 3: 550
- 7b Glasnov TN, Kappe CO. Adv Synth Catal 2010; 352: 3089
- 7c Volovych I, Neumann M, Schmidt M. et al. RSC Adv 2016; 6: 58279
- 7d Takale BS, Thakore RR, Mallarapu R, Gallou F, Lipshutz BH. Org Process Res Dev 2020; 24: 101
- 7e Xu J, Lan XB, Xia LJ, Yang Y, Cao G. J Serb Chem Soc 2021; 86: 247
- 7f Dunst C, Knochel P. Synlett 2011; 14: 2064
- 8 Castillo PR, Buchwald SL. Chem Rev 2016; 116: 12564
- 9 Béchamp AJ. Ann Chim Phys 1854; 42: 186
- 10a Merlic CA, Motamed S, Quinn B. J Org Chem 1995; 60: 3365
- 10b Chandrappa S, Vinaya T, Ramakrishnappa T, Rangappa KS. Synlett 2010; 20: 3019
- 10c Ramadas K, Srinivasan N. Synth Commun 1992; 22: 3189
- 10d Doxsee KM, Feigel M, Stewart KD, Canary JW, Knobler CB, Cram DJ. J Am Chem Soc 1987; 109: 3098
- 10e Sundberg RJ, Pitts WJ. J Org Chem 1991; 56: 3048
- 10f Khan FA, Dash J, Sudheer C, Gupta RK. Tetrahedron Lett 2003; 44: 7783
- 11 Friščić T, Childs SL, Rizvi SAA, Jones W. CrystEngComm 2009; 11: 418
- 12 Schumacher C, Fritz L, Hanek LM, Sidorin V, Brüx D, Bolm C. Molecules 2023; 28: 807
For selected reviews on reaction development using mechanochemistry, see:
For selected works on mechanochemical synthesis using ball milling from our group, see:
For examples of mechanochemical syntheses of bioactive compounds, see:
The selected examples of sustainable synthetic strategy for Boscalid, see:
The selected example of solution-based Béchamp reduction: