Subscribe to RSS
DOI: 10.1055/a-2744-6665
NaHBEt3-Catalyzed 1,2-Hydroboration of α,β-Unsaturated Carbonyls: Mechanistic Insights into Hydride Transfer Pathways
Authors
S.P. is grateful to GTIIT for seed grant (KD2300040).

Abstract
A highly 1,2-selective hydroboration of α,β-unsaturated ketones and aldehydes has been achieved by employing simple and readily available, transition metal-free NaHBEt3 as a catalyst. This sodium-catalyzed reaction proceeds at room temperature, exclusively furnishing the corresponding allylic alcohols with broad substrate scope and excellent functional group tolerance, including nitrile, amine, esters, nitro groups, alkoxy groups, and halides. Mechanistic studies suggest that (i) BEt3 serves as a Lewis acid cocatalyst, activating the substrate and facilitating the reaction, (ii) the resting hydride species are H2Bpin and (EtO)HBpin, and (iii) the rate-determining step involves hydride transfer from these resting species to the carbonyl carbon.
Keywords
Alkali metal catalyst - 1,2-Reduction - α,β-Unsaturated carbonyls - Allylic alcohols - Hydride transfer pathwayPublication History
Received: 11 September 2025
Accepted after revision: 11 November 2025
Accepted Manuscript online:
11 November 2025
Article published online:
01 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Carey FA, Sundberg RJ. Advanced Organic Chemistry. 4rd ed New York: Kluwer Academic/Plenum Publishers; 2001: 249-329
- 2 Schweizer B. Patai S, Rappoport Z. eds Structural Chemistry of Enones. In Enones. Weinheim: Wiley-VCH Verlag; 1989. Part 1 29-54
- 3a Hudlicky M. Reductions in Organic Chemistry. Chichester, U.K.: Ellis Horwood Ltd.; 1984: 96-175
- 3b Abdel-Magid AF. ed Reductions in Organic Chemistry. Recent Advances and Practical Applications. ACS Symposium Series Washington, DC: American Chemical Society; 1998
- 4 Keinan E, Greenspoon N. Trost BM, Fleming I. eds. In: Comprehensive Organic Synthesis. Vol 8. Oxford: Pergamon Press; 1991. Chapter 3 5
- 5a Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Chichester: Wiley; 2001: 178-184
- 5b Mohr C, Hofmeister H, Lucas M, Claus P. Chem Eng Technol 2000; 23: 324
- 5c Bailie JE, Hutchings GJ. Chem Commun 1999; 2151
- 6a Wipf P. Trost BM. ed. In: Comprehensive Organic Synthesis. Vol 5. Oxford: Pergamon Press; 1991: 827
- 6b Johnson RA, Sharpless KB. Trost BM. ed. In: Comprehensive Organic Synthesis. Vol 7. Oxford: Pergamon Press; 1991: 389
- 6c Hoveyda AH, Evans DA, Fu GC. Chem Rev 1993; 93: 1307
- 6d Lipshutz BH, Sengupta S. Organic Reactions. Vol 41. New York: Wiley; 1992: 135
- 6e Godleski SA. Trost BM. ed. In: Comprehensive Organic Synthesis. Vol 4. Oxford: Pergamon Press; 1991: 585
- 6f Overman LE. Acc Chem Res 1992; 25: 352
- 6g Lumbroso A, Cooke ML, Breit B. Angew Chem Int Ed 2013; 52: 1890
- 7a Hudlicky M. Reductions in Organic Synthesis. Chichester: Ellis Horwood Ltd.; 1984: 119-122
- 7b Malkov AV. Angew Chem Int Ed 2010; 49: 9814
- 8a Noyori R. Angew Chem Int Ed 2002; 41: 2008
- 8b Clarke ML, Roff GJ. In: Handbook of Homogeneous Hydrogenation. de Vries JG, Elsevier CJ. eds Weinheim: Wiley-VCH; 2007: 413-454
- 9 Corey EJ, Helal CJ. Angew Chem Int Ed 1998; 37: 1986
- 10a Wang R, Park S. ChemCatChem 2021; 1898
- 10b Guo J, Chen JH, Lu Z. Chem Commun 2015; 51: 5725
- 10c Vasilenko V, Blasius CK, Wadepohl H, Gade LH. Angew Chem Int Ed 2017; 56: 8393
- 10d Chen F, Zhang Y, Yu L, Zhu S. Angew Chem Int Ed 2017; 56: 2022
- 10e Moser R, Bošković ZV, Crowe CS, Lipshutz BH. J Am Chem Soc 2010; 132: 7852
- 11a Magre M, Szewczyk M, Rueping M. Chem Rev 2022; 122: 8261
- 11b Jang YK, Magre M, Rueping M. Org Lett 2019; 21: 8349
- 12a Saptal VB, Wang R, Park S. RSC Adv 2020; 10: 43539
- 12b Query IP, Squier PA, Larson EM, Isley NA, Clark TB. J Org Chem 2011; 76: 6452
- 12c Manas MG, Sharninghausen LS, Balcells D, Crabtree RH. New J Chem 2014; 38: 1694
- 12d Peng D, Zhang M, Huang Z. Chem Eur J 2015; 21: 14737
- 12e Wu Y, Shan C, Ying J. et al. Green Chem 2017; 19: 4169
- 12f Bisai MK, Das T, Vanka K, Sen SS. Chem Commun 2018; 54: 6843
- 12g Zhu Z, Wu X, Xu X. et al. J Org Chem 2018; 83: 10677-10683
- 12h Shin WK, Kim H, Jaladi AK, An DK. Tetrahedron 2018; 74: 6310
- 12i Jeong E, Heo J, Park S, Chang S. Chem Eur J 2019; 25: 6320
- 12j Liu T, He J, Zhang Y. Org Chem Front 2019; 6: 2749
- 12k Kucinski K, Hreczycho G. Green Chem 2019; 21: 1912
- 12l Yao W, Fang H, He Q, Peng D, Liu G, Huang Z. J Org Chem 2019; 84: 6084
- 12m Yang SJ, Jaladi AK, Kim JH, Gundeti S, An DK. Bull Korean Chem Soc 2019; 40: 34
- 12n Yao W, He L, Han D, Zhong A. J Org Chem 2019; 84: 14627
- 12o Stanford MW, Bismuto A, Cowley M. Chem Eur J 2020; 26: 9855
- 12p Willcox D, Carden JL, Ruddy AJ, Newman PD, Melen RL. Dalton Trans 2020; 49: 2417
- 12q Bedi D, Brar A, Findlater M. Green Chem 2020; 22: 1125
- 12r Yao W, Wang J, Zhong A, Li J, Yang J. Org Lett 2020; 22: 8086
- 12s Du Z, Behera B, Kumar A, Ding Y. J Organomet Chem 2021; 950: 121982
- 12t Wang K, Yao W, Hu D, Qi X, Zhang J-Q, Ren H. Eur J Org Chem 2022; e202200759
- 13a Itoh M, Inoue K, Ishikawa J, Iwata K. J Organomet Chem 2001; 629: 1-6
- 13b Bage AD, Nicholson K, Hunt TA, Langer T, Thomas SP. ACS Catal 2020; 10: 13479-13486
- 13c Bage AD, Hunt TA, Thomas SP. Org Lett 2020; 22: 4107-4112
- 13d Macleod J, Thomas SP. Nat Chem 2025;
- 13e Krupa B, Nowicki M, Huninik P, Szyling J, Walkowiak J. ACS Sustain Chem Eng 2025;
- 13f Krupa B, Nowicki M, Szyling J, Walkowiak J. J Catal 2025; 451: 116362
- 14 The in situ-generated trans-2a in the crude solution remained stable under air for 2 days, which rules out O2 as a factor in the formation of cis-2a. However, treating trans-2a with 1 equiv of D2O led to the formation of 21% cis-2a within 30 min at 23 °C. This result suggests that the isomerization of trans-2a to cis-2a likely proceeds via the acid-mediated formation of a highly stable 1,3-diphenylpropenyl cation as a key step, although the specific isomerization pathway remains to be elucidated
- 15 A standard hydroboration reaction of 1b in the presence of TMEDA (3 mol%) proceeded to yield 2b in >99% within 0.5 h, ruling out hidden boron catalysis as a major pathway
- 16 Parks DJ, Blackwell JM, Piers WE. J Org Chem 2000; 65: 3090
- 17 Park S, Brookhart M. Organometallics 2010; 29: 6057
- 18a The ethoxy moiety (OEt) likely originates from in situ reaction of BEt3 with adventitious H2O and/or O2. The exact mechanism is under investigation
- 18b Brown HC, Hebert NC. J Organomet Chem 1983; 255: 135
- 18c Ollivier C, Renaud P. Chem Rev 2001; 101: 3415
- 19 Golub IE, Filippov OA, Belkova NV, Epstein LM, Shubina ES. J Organomet Chem 2018; 865: 247
- 20 Wang R, Tang Y, Xu M, Meng C, Li F. J Org Chem 2018; 83: 2274
- 21 Li C, Chen H, Li J. et al. Adv Synth Catal 2018; 360: 1600
In terms of hydride donating ability, Na(EtO)HBpin is assumed to be a true hydride donor rather than NaH2Bpin. See: