Subscribe to RSS

DOI: 10.1055/a-2738-8038
Electrophilic C(sp2)−H Borylation of Nonactivated and Deactivated Arenes with Pyramidal Boron Lewis Superacids
Authors
Supported by: HORIZON EUROPE European Research Council 101044649
We acknowledge the European Research Council (ERC, B-yond, grant agreement 101044649), and the Fond National de la Recherche Scientifique (F.R.S.-FNRS) for financial support (Grant Numbers: T.0012.21 (G.B), FRIA PhD grants for A.O (1.E.097.20) and Chargé de recherche research grant for A.C (1.B.087.21F)). We thank the PC2 (UNamur) technological platforms for access to all characterization instruments.
Supported by: Université Catholique de Louvain 2.5020.11,G006.15,RW/GEQ2016,RW1610468,RW2110213,U.G011.22,U.G018.19 Supported by: Walloon Region Supported by: Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture 1.B.087.21F,1.E.097.20 Supported by: Fonds De La Recherche Scientifique - FNRS T.0012.21

Dedication
Dedicated to Prof. Paul Knochel for his 70th birthday.
Abstract
The electrophilic C–H borylation of unactivated and deactivated, electron-poor arenes is a challenging reaction even with the most electrophilic borenium-ion species. We now report the transition-metal-free borylation of a wide range of aromatics and polyaromatics with a pyramidal boron Lewis superacid from the 9-boratriptycene family. The mechanism of formation of a highly reactive pyramidal boron Lewis superacid and the origin of the slow and continuous release of this highly reactive borylation reagent in the presence of a Lewis base are reminiscent of the reactions of latent frustrated Lewis pairs with small molecules.
Keywords
Borylations - Boron Lewis superacids - Borylating reagents - Pyramidal boranes - Boratriptycenes - C–H borylation reactionsPublication History
Received: 18 July 2025
Accepted after revision: 27 October 2025
Article published online:
19 December 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Rej S, Chatani N. Angew Chem Int Ed 2022; 61: e202209539
- 1b Luo L, Tang S, Wu J, Jin S, Zhang H. Chem Rec 2023; 23: e202300023
- 1c Wu G, Ma T. Chin Chem Lett 2025 S1001-8417(25)00918-0
- 2a Iqbal SA, Pahl J, Yuan K, Ingleson MJ. Chem Soc Rev 2020; 49: 4564-4591
- 2b Le Gac A, Mallet-Ladeira S, Roger J. et al. Angew Chem Int Ed 2025; 64: e202501178
- 2c Berionni G. Angew Chem Int Ed 2022; 61: e202210284
- 3a Rochette E, Courtemanche M-A, Fontaine F-G. Chem Eur J 2017; 23: 3567-3571
- 3b Ashwathappa PKS, Higashi T, Desrosiers V, Omaña AA, Fontaine F-G. 2023 62. e202309295
- 4a Iqbal SA, Cid J, Procter RJ, Uzelac M, Yuan K, Ingleson MJ. Angew Chem Int Ed 2019; 58: 15381-15385
- 4b Schellbach AV, Willcox DR, Guarnaccia M, Nichol GS, Fasano V, Ingleson MJ. Angew Chem Int Ed 2025; 64: e202512254
- 5 Liu Y, Dong W, Li ZH, Wang H. Chem 2021; 7: 1843-1851
- 6 Lv J, Chen X, Xue X-S. et al. Nature 2019; 575: 336-340
- 7a Ben Saida A, Chardon A, Osi A. et al. Angew Chem 2019; 131: 17045-17049
- 7b Chardon A, Osi A, Mahaut D. et al. Angew Chem Int Ed 2020; 59: 12402-12406
- 7c Osi A, Tumanov N, Wouters J, Chardon A, Berionni G. Synthesis 2023; 55: 347-353
- 8 Osi A, Mahaut D, Tumanov N. et al. Angew Chem Int Ed 2022; 61: e202112342
- 9a Tan X, Wang X, Hua Li Z, Wang H. J Am Chem Soc 2022; 144 (51) 23286-23291
- 9b Tan X, Wang H. Chem Commun 2025; 61: 4690-4693
- 9c Tan X, Wang X. ChemCatChem 2023; 15: e202300734
- 10 The synthesis and characterisation of 3 is described here Osi A, Mahaut D, Tumanov N. et al. Angew Chem 2022; 134: e202112342
- 11 The synthesis and characterisation of 3′-B(C6F5)4 that differs from 3′ only by the weakly coordinating counteranion is described here: Osi A, Tumanov N, Fusaro L, Wouters J, Berionni G, Chardon A. Chem Eur J 2023; 29: e202301146
- 12a Tsuzuki S, Kubota K, Matsumoto H. J Phys Chem B 2013; 117: 16212-16218
- 12b Kubisiak P, Narkeviciu D, Nicotri C, Eilmes A. J Phys Chem B 2025; 129: 2560-2572
- 12c Arvai R, Toulgoat F, Langlois BR, Sanchez J-Y, Médebielle M. Tetrahedron 2009; 65: 5361-5368
- 13 Gallagher RT, Basu S, Stuart DR. Adv Synth Catal 2020; 362: 320-325