Subscribe to RSS
DOI: 10.1055/a-2736-0204
Total Synthesis of Denigrins D and E, and Formal Synthesis of Polycitones A and B
Authors
We acknowledge the financial support from the Science and Engineering Research Board, New Delhi, through a research grant (CRG/2022/001698).

Dedication
Dedicated to Prof. S. Chandrasekaran on the occasion of his 80th birthday.
Abstract
We report here the concise total syntheses of the densely substituted pyrrole-containing, marine-derived alkaloids denigrins E and D, together with the formal syntheses of polycitones A and B. Starting from p-methoxydibenzyl ketone, denigrin E was obtained in just two steps (44% overall yield), while denigrin D was synthesized in three steps (26% overall yield). In addition, the Steglich synthon, a key intermediate toward polycitones A and B, was accessed in three steps (34% overall yield), thus completing the formal synthesis of polycitones A and B. The overall efficiency of this route arises from the key transformation: a microwave-assisted Paal–Knorr pyrrole synthesis.
Keywords
Marine natural product - Total synthesis - Denigrins E & D - Formal synthesis - Polycitone A & B - Microwave - Paal–Knorr SynthesisPublication History
Received: 29 September 2025
Accepted after revision: 31 October 2025
Article published online:
18 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Young IS, Thornton PD, Thompson A. Nat Prod Rep 2010; 27: 1801-1839
- 1b Furstner A. Angew Chem Int Ed 2003; 42: 3582-3603
- 1c O’Hagan D. Nat Prod Rep 2000; 17: 435-446
- 1d Fan H, Peng J, Hamann MT, Hu JF. Chem Rev 2008; 108: 264-287
- 2a Biava M, Porretta GC, Poce G. et al. J Med Chem 2008; 51: 3644-3648
- 2b Biava M, Porretta GC, Poce G. et al. ChemMedChem 2011; 6: 593-599
- 3a Curran D, Grimshaw J, Perera SD. Chem Soc Rev 1991; 20: 391-404
- 3b Lee CF, Yang LM, Hwu TY, Feng AS, Tseng JC, Luh TY. J Am Chem Soc 2000; 122: 4992-4993
- 3c Kaur, Choi MDH. Chem Soc Rev 2015; 44: 58-77
- 4a Coen LMD, Heugebaert TSA, Garcia D, Stevens CV. Chem Rev 2016; 116: 80-139
- 4b Blunt JW, Copp BR, Keyzers RA, Munrao MHG, Prinsep MR. Nat Prod Rep 2014; 31: 160-258
- 4c Mohamed MS, Fathallah SS. Mini-Rev Org Chem 2014; 11: 477-507
- 4d Gholap SS. Eur J Med Chem 2016; 110: 13-31
- 4e Takase M, Narita T, Fujita W. et al. J Am Chem Soc 2013; 135: 8031-8040
- 4f Imbri D, Tauber J, Opatz T. Mar Drugs 2014; 12: 6142-6177
- 5a Tzitzikas TZ, Neochoritis CG, Domling A. ACS Med Chem Lett 2019; 10: 389-392
- 5b Ganesh BH, Raj AG, Aruchamy B, Nanjan P, Drago C, Ramani P. ChemMedChem 2023; e202300447
- 6a Kumar MMK, Naik JD, Satyavathi K. et al. Nat Prod Res 2014; 28: 888-894
- 6b Barbosa LCA, Ren D, Torikai K. et al. ACS Omega 2023; 8: 37798-37807
- 7a Rudi A, Goldberg I, Stein Z. et al. J Org Chem 1994; 59: 999-1003
- 7b Rudi A, Evan T, Aknin M, Kashman Y. J Nat Prod 2000; 63: 832-833
- 8a Bloor SJ, Schmitz FJ. J Am Chem Soc 1987; 109: 6134-6136
- 8b Kobayashi J, Tsuda M, Tanabe A. et al. J Nat Prod 1991; 54: 1634-1638
- 8c Copp BR, Ireland CM, Barrows LR. J Org Chem 1991; 56: 4596-4597
- 9 Loya S, Rudi A, Kashman Y, Hizi A. Biochem J 1999; 344: 85-92
- 10 Neufeld J, Stünkel T, Mück-Lichtenfeld C, Daniliuc CG, Gilmour R. Angew Chem Int Ed 2021; 60: 13647-13651
- 11 Kang U, Cartner KL, Wang D. et al. J Nat Prod 2020; 83: 3464-3470
- 12 Linardic CM. Cancer Lett 2008; 270: 10-18
- 13 Chen Y, Lan P, Banwell MG. Org Lett 2022; 24: 2931-2934
- 14 Kreipl AT, Reid C, Steglich W. Org Lett 2002; 4 (19) 3287-3288
- 15 Gupton JT, Miller RB, Krumpe KE. et al. Tetrahedron 2005; 61 (07) 1845-1854
- 16a Betkekar VV, Sayyad AA, Kaliappan KP. Org Lett 2014; 16: 5540-5543
- 16b Palanichamy K, Subrahmanyam AV, Kaliappan KP. Org Biomol Chem 2011; 9: 7877-7886
- 16c Ravikumar V, Kaliappan KP. Org Lett 2007; 9 (12) 2417-2419
- 16d Gowrisankar P, Pujari SA, Kaliappan KP. Chem Eur J 2010; 16: 5858-5862
- 16e Pujari SA, Gowrisankar P, Kaliappan KP. Chem Asian J 2011; 6: 3137-3315
- 16f Sayyad AA, Kaim K, Kaliappan KP. Org Biomol Chem 2020; 18: 5937-5950
- 17a Dake GG, Kaliappan KP. J Org Chem 2024; 89: 5825-8532
- 17b Bandaru A, Kaliappan KP. Chem Asian J 2020; 15: 2208-2211
- 17c Bandaru A, Si D, Kaliappan KP, Asian J. Org Chem 2020; 9: 1045-1052
- 17d Sayyad AA, Kaim K, Kaliappan KP. Org Biomol Chem 2020; 18: 5937-5950
- 17e Si D, Kaliappan KP, Asian J. Org Chem 2020; 9: 1205-1212
- 17f Gowrisankar P, Pujari SA, Kaliappan KP. Chem Eur J 2010; 16: 5858-5862
- 17g Kaliappan KP, Gowrisankar P. Synlett 2007; 10: 1537-1540
- 18 Bhandari S, Ray S. Synth Commun 1998; 28: 765-771
- 19 Kong L, Hu X, Bai LP. ACS Omega 2022; 7: 2337-2343
- 20 Mao S, Gao YR, Zhang SL, Guo DD, Wang YQ. Eur J Org Chem 2015; 876-885