RSS-Feed abonnieren
DOI: 10.1055/a-2735-9496
Epoxide Synthesis via Energy-Transfer-Enabled 1,4-Nitrogen Migration
Autor*innen
National Natural Science Foundation of China (nos. 22201179 and 22471168 to H.-M.H.), Supported by State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, the startup funding from ShanghaiTech University.

Dedication
Dedicated to Professor John Murphy on the occasion of his 70th birthday.
Abstract
Epoxides are privileged scaffolds in synthetic chemistry, serving as key precursors for amino alcohols and pharmaceuticals. Traditional strategies to access valuable α-amino epoxides often face limitations in selectivity and require harsh conditions. Inspired by the classic di-π-methane rearrangement, we have developed a visible-light-driven alternative that triggers an unprecedented 1,4-nitrogen migration via an oxa-π,σ-methane rearrangement mechanism. This energy-transfer-catalysis process efficiently converts readily available allylic alcohols into α-amino-substituted epoxides under mild conditions. This method provides a direct and versatile route to these high-value building blocks, bypassing previous synthetic bottlenecks. We describe the discovery and mechanical insights of this new reaction paradigm in detail.
Publikationsverlauf
Eingereicht: 22. September 2025
Angenommen nach Revision: 17. Oktober 2025
Artikel online veröffentlicht:
24. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Zhu Y, Wang Q, Cornwall RG, Shi Y. Chem Rev 2014; 114: 8199
- 2 Yang D, Ye X-Y, Xu M, Pang K-W, Zou N, Letcher RM. J Org Chem 1998; 63: 6446
- 3 Nicolaou KC, Ninkovic S, Sarabia F. et al. J Am Chem Soc 1997; 119: 7974
- 4 Fürstner A, Bouchez LC, Funel J. et al. Angew Chem Int Ed 2007; 46: 9265
- 5 Lei X, Johnson RP, Porco JA. Angew Chem Int Ed 2003; 42: 3913
- 6 Gorzynski Smith J. Synthesis 1984; 1984: 629
- 7 Robertson J, Pillai J, Lush RK. Chem Soc Rev 2001; 30: 94
- 8 Wu X, Ma Z, Feng T, Zhu C. Chem Soc Rev 2021; 50: 11577
- 9 Li W, Xu W, Xie J, Yu S, Zhu C. Chem Soc Rev 2018; 47: 654
- 10 Wu X, Zhu C. Acc Chem Res 2020; 53: 1620
- 11 Studer A, Bossart M. Tetrahedron 2001; 57: 9649
- 12 Holden CM, Greaney MF. Chem – Eur J 2017; 23: 8992
- 13 Chen ZM, Zhang XM, Tu YQ. Chem Soc Rev 2015; 44: 5220
- 14 Han O, Frey PA. J Am Chem Soc 1990; 112: 8982
- 15 Handa S, Rose CJ. Tetrahedron Lett 2004; 45: 8643
- 16 Ye CX, Shen X, Chen S, Meggers E. Nat Chem 2022; 14: 566
- 17 Wei D, Liu T, He Y. et al. Angew Chem Int Ed 2021; 60: 26308
- 18 Hu S, Gao C, Liu T. et al. Angew Chem Int Ed 2024; 63: e202400168
- 19 Zhang Z, Wang J, Yu M, Ye S, Wu J. Org Lett 2023; 25: 304
- 20 Fan W, Cui Y, Zhan B. et al. Nat Chem 2025; 17: 941
- 21 Zimmerman HE, Binkley RW, Givens RS, Sherwin MA. J Am Chem Soc 1967; 89: 3932
- 22 Zimmerman HE, Samuelson GE. J Am Chem Soc 1967; 89: 5971
- 23 Zimmerman HE, Steinmetz MG, Kreil C. J Am Chem Soc 1978; 100: 4162
- 24 Zimmerman HE, Armesto D. Chem Rev 1996; 96: 3065
- 25 Tenney LP, Boykin DW, Lutz RE. J Am Chem Soc 1966; 88: 1835
- 26 Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Chem Soc Rev 2024; 53: 1068
- 27 Zhou Q, Zou Y, Lu L, Xiao W. Angew Chem Int Ed 2019; 58: 1586
- 28 Großkopf J, Kratz T, Rigotti T, Bach T. Chem Rev 2022; 122: 1626
- 29 Zhu M, Zhang X, Zheng C, You S-L. Acc Chem Res 2022; 55: 2510
- 30 Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Chem Rev 2022; 122: 2650
- 31 Zheng Y, Dong QX, Wen SY, Ran H, Huang HM. J Am Chem Soc 2024; 146: 18210
- 32 Wen S-Y, Chen J-J, Zheng Y, Han J-X, Huang H-M. Angew Chem Int Ed 2025; 64: e202415495
- 33 Wen S-Y, Chen J-J, Zheng Y, Huang H-M. CCS Chem 2025; 7: 2721
- 34 Chen S-S, Zheng Y, Xing Z-X, Huang H-M. Nat Commun 2025; 16: 3724
- 35 Wang Q-Z, Zheng Y, Wu W-T, Huang H-M. J Am Chem Soc 2025; 147: 16248
- 36 Huang HM, Bellotti P, Ma J, Dalton T, Glorius F. Nat Rev Chem 2021; 5: 301
- 37 Tan G, Das M, Kleinmans R, Katzenburg F, Daniliuc C, Glorius F. Nat Catal 2022; 5: 1120
- 38 Tan G, Das M, Keum H, Bellotti P, Daniliuc C, Glorius F. Nat Chem 2022; 14: 1174
- 39 Qi X-K, Zheng M-J, Yang C, Zhao Y, Guo L, Xia W. J Am Chem Soc 2023; 145: 16630
- 40 Erchinger JE, Hoogesteger R, Laskar R. et al. J Am Chem Soc 2023; 145: 2364
- 41 Dey J, Banerjee N, Daw S, Guin J. Angew Chem Int Ed 2023; 62: e202312384
- 42 Lai S, Wei B, Wang J, Yu W, Han B. Angew Chem Int Ed 2021; 60: 21997
- 43 Zheng Y, Wang Z, Ye Z. et al. Angew Chem Int Ed 2022; 61: e202212292
- 44 Kim S, Oh H, Dong W. et al. ACS Catal 2023; 13: 9542
- 45 Li S-S, Luo J, Liang S-N. et al. Chin Chem Lett 2024; 110424
- 46 Chen DN, Qin LL, Luo DJ. et al. Org Lett 2025; 27: 5744
- 47 Liu T-M, Zhu L-Y, Qi M-H. et al. Chem Sci 2025; 16: 14811