RSS-Feed abonnieren
DOI: 10.1055/a-2718-2019
Tungsten-Catalyzed Allylation of Sulfonyl Hydrazides: Regioselective Synthesis of Branched Allylic Sulfones
Autoren
Gefördert durch: Project of Jilin Education Department JJKH20220233KJ
Gefördert durch: Jilin Institute of Chemical Technology 2021015,2021042
Gefördert durch: Natural Science Foundation of Jilin Province YDZJ202201ZYTS348
Funding Information This work was supported by the Natural Science Foundation of Jilin Province (YDZJ202201ZYTS348), the Project of Jilin Education Department (JJKH20220233KJ), and the starting fund of Jilin institute of Chemical Technology (Nos. 2021015 and 2021042).

Abstract
A highly regioselective tungsten (W)-catalyzed allylic sulfonylation of allylic carbonates with readily available sulfonyl hydrazides has been developed. Under tungsten catalysis, a variety of allylic sulfones can be delivered with the help of 4,4′-di-tert-butyl-2,2′-bipyridine in moderate to good yields with excellent b/l regioselectivities. This approach features mild conditions, broad substrate scope, where aryl- and alkyl-substituted allylic carbonates and sulfonyl hydrazides are suitable substrates. This noble-metal-free catalyst system exhibits high reactivity and regioselectivity for the construction of C–S bond.
Publikationsverlauf
Eingereicht: 13. September 2025
Angenommen: 07. Oktober 2025
Accepted Manuscript online:
07. Oktober 2025
Artikel online veröffentlicht:
11. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Nambo M, Maekawa Y, Crudden CM. ACS Catal 2022; 12: 3013-3032
- 1b Corpas J, Kim-Lee S-H, Mauleón P, Arrayás RG, Carretero JC. Chem Soc Rev 2022; 51: 6774-6823
- 1c El-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem Rev 2009; 109: 2315-2349
- 2a Shou Q-Y, Tan Q, Shen Z-W. Tetrahedron Lett 2009; 50: 4185-4187
- 2b Bonsignore L, Cottiglia F, Elkhaili H. et al. Il Farmaco 1998; 53: 425-430
- 2c Nakamura H, Wu H, Kobayashi J. et al. Tetrahedron Lett 1983; 24: 4105-4108
- 2d Reck F, Zhou F, Girardot M. et al. J Med Chem 2005; 48: 499-506
- 3a Carswell CI, Plosker GL, Jarvis B. Drugs 2002; 62: 2075-2085
- 3b Johnson AP, Livermore DM. Lancet 1999; 354: 2012-2013
- 3c Ovenden SPB, Capon RJ. J Nat Prod 1999; 62: 1246-1249
- 3d Songue JL, Azebaze AGB, Vardamides JC. et al. Bull Chem Soc Ethiop 2006; 20: 173-176
- 3e Woo SY, Kim JH, Moon MK. et al. J Med Chem 2014; 57: 1473-1487
- 4a Lu Z, Ma S. Angew Chem Int Ed 2008; 47: 258-297
- 4b Koschker P, Breit B. Acc Chem Res 2016; 49: 1524-1536
- 4c Qu J, Helmchen G. Acc Chem Res 2017; 50: 2539-2555
- 4d Turnbull BWH, Evans PA. J Org Chem 2018; 83: 11463-11479
- 4e Rössler SL, Petrone DA, Carreira EM. Acc Chem Res 2019; 52: 2657-2672
- 4f Cheng Q, Tu H-F, Zheng C, Qu J-P, Helmchen G, You S-L. Chem Rev 2019; 119: 1855-1969
- 4g Pàmies O, Margalef J, Cañellas S. et al. Chem Rev 2021; 121: 4373-4505
- 4h Stivala CE, Zbieg JR, Liu P, Krische MJ. Acc Chem Res 2022; 55: 2138-2147
- 4i Hartwig JF, Stanley LM. Acc Chem Res 2010; 43: 1461-1475
- 5a Chu X-Q, Meng H, Xu X-P, Ji S-J. Chem Eur J 2015; 21: 11359-11368
- 5b Xie P, Wang J, Liu Y. et al. Nat Commun 2018; 9: 1321
- 5c Zeng J-H, Li D-C, Zhang S, Zhan Z-P. Org Lett 2022; 24: 1195-1200
- 5d Zhang Q, Dong D, Zi W. J Am Chem Soc 2020; 142 (37) 15860-15869
- 6a Jegelka M, Plietker B. Org Lett 2009; 11: 3462-3465
- 6b Ueda M, Hartwig JF. Org Lett 2010; 12: 92-94
- 6c Wu X-S, Chen Y, Li M-B, Zhou M-G, Tian S-K. J Am Chem Soc 2012; 134: 14694-14697
- 6d Ma X-T, Dai R-H, Zhang J, Gu Y, Tian S-K. Adv Synth Catal 2014; 356: 2984-2988
- 6e Cai A, Kleij AW. Angew Chem Int Ed 2019; 58: 14944-14949
- 6f Khan A, Zhao H, Zhang M, Khan S, Zhao D. Angew Chem Int Ed 2020; 59: 1340-1345
- 6g Yuan W-C, Fu X-H, Zhang Y-P. et al. J Org Chem 2025; 90: 2670-2681
- 6h Chang C-Y, Aponick A. J Am Chem Soc 2024; 146: 16996-17002
- 7a Lu C-J, Chen H, Chen D-K. et al. Org Biomol Chem 2016; 14: 10833-10839
- 7b Hou Y, Shen Q, Li Z. et al. Adv Synth Catal 2018; 360: 631-636
- 7c Gong B, Zhu H, Liu Y. et al. Green Synth Catal 2022; 3: 110-115
- 7d Yu J, Yan X, Chen Y, Guo K, Wang S, Ma X. J Org Chem 2024; 89: 10344-10348
- 7e Rehman SU, Li C. Org Lett 2023; 25: 3693-3697
- 8a Pritzius AB, Breit B. Angew Chem Int Ed 2015; 54: 3121-3125
- 8b Pritzius AB, Breit B. Angew Chem Int Ed 2015; 54: 15818-15822
- 8c Xie H, Breit B. Org Lett 2024; 26: 4438-4442
- 9a Alexakis A, Croset K. Org Lett 2002; 4: 4147-4149
- 9b Veldhuizen JJ, Campbell JE, Giudici RE, Hoveyda AH. J Am Chem Soc 2005; 127: 6877-6882
- 9c Plietker B. Angew Chem Int Ed 2006; 45: 6053-6056
- 9d Selim KB, Matsumoto Y, Yamada K, Tomioka K. Angew Chem Int Ed 2009; 48: 8733-8735
- 9e Giedyk M, Goliszewska K, Gryko D. Chem Soc Rev 2015; 44: 3391-3404
- 9f Frei A, King AP, Lowe GJ. et al. Chem Eur J 2021; 27: 2021-2029
- 9g Egorova KS, Ananikov VP. Organometallics 2017; 36: 4071-4090
- 9h Xu L, Zhang F, Wang Y-E, Bai C, Xiong D, Mao J. Org Lett 2024; 26: 9288-9293
- 9i Xia H, Jiang X, Lin D. et al. J Am Chem Soc 2024; 146: 28468-28481
- 9j Zhang C, Wu X, Qu J, Chen Y. J Am Chem Soc 2024; 146: 25918-25926
- 9k Xiong W, Jiang X, Wang W-C. et al. J Am Chem Soc 2023; 145: 7983-7991
- 9l Sekino T, Sato S, Yoshino T, Kojima M, Matsunaga S. Org Lett 2022; 24: 2120-2124
- 9m Wang L, Wang L, Li M, Chong Q, Meng F. J Am Chem Soc 2021; 143: 12755-12765
- 9n Han J-F, Guo P, Zhang X-G, Liao J-B, Ye K-Y. Org Biomol Chem 2020; 18: 7740-7750
- 10a Brito JA, Royo B, Gomez M. Catal Sci Technol 2011; 1: 1109-1118
- 10b Bruno SM, Valente AA, Goncalves IS, Pillinger M. Coord Chem Rev 2023; 478: 214983.1
- 11a Trost BM, Lautens M. J Am Chem Soc 1982; 104: 5543-5545
- 11b Trost BM, Hung M-H. J Am Chem Soc 1983; 105: 7757-7759
- 11c Trost BM, Hachiya I. J Am Chem Soc 1998; 120: 1104-1105
- 11d Trost BM, Zhang Y. J Am Chem Soc 2006; 128: 4590-4591
- 11e Trost BM, Zhang Y. J Am Chem Soc 2007; 129: 14548-14549
- 11f Trost BM, Miller JR, Hoffman CM. J Am Chem Soc 2011; 133: 8165-8167
- 12a Belda O, Moberg C. Acc Chem Res 2004; 37: 159-167
- 12b Belda O, Kaiser N-F, Bremberg U, Larhed M, Hallberg A, Moberg C. J Org Chem 2000; 65: 5868-5869
- 12c Belda O, Lundgren S, Moberg C. Org Lett 2003; 5: 2275-2276
- 13a Hughes DL, Palucki M, Yasuda N, Reamer RA, Reider PJ. J Org Chem 2002; 67: 2762-2768
- 13b Trost BM, Dogra K, Hachiya I. et al. Angew Chem Int Ed 2002; 41: 1929-1932
- 13c Lloyd-Jones GC, Krska SW, Hughes DL. et al. J Am Chem Soc 2004; 126: 702-703
- 14a Glorius F, Neuburger M, Pfaltz A. Org Lett 1999; 1: 141-142
- 14b Glorius F, Neuburger M, Pfaltz A. Helv Chim Acta 2001; 84: 3178-3196
- 15a Salman M, Xu Y, Khan S, Zhang J, Khan A. Chem Sci 2020; 11: 5481-5486
- 15b Xu Y, Salman M, Khan S, Zhang J, Khan A. J Org Chem 2020; 85: 11501-11510
- 16a Khan S, Salman M, Wang Y, Zhang J, Khan A. J Org Chem 2023; 88: 11992-11999
- 16b Khan S, Zhang J, Khan A. Org Lett 2024; 26: 2758-2762
- 17 Xu W. Synlett 2025; 36: 407-411
- 18 For details, see the Supporting Information.
- 19 After the attempts starting from 4,4′-di-tert-butyl-2,2′-bipyridine and W(CO)6, the pure [W(4,4′-ditert-butyl-2,2′-bipyridine)(CO)4] complex cannot be obtained, the author turned attention to 2,2′-bipyridine.
- 20a Wang T-T, Wang F-X, Yang F-L, Tian S-K. Chem Commun 2014; 50: 3802-3805
- 20b Xu J-K, Gu Y, Tian S-K. Chin J Org Chem 2015; 35: 618-624
- 20c Li M-M, Cheng L, Xiao L-J, Xie J-H, Zhou Q-L. Angew Chem Int Ed 2021; 60: 2948-2951
- 21 Typical Procedure: A pressure tube equipped with a magnetic stir bar was charged with W(CO)6 (10 mol%), L2 (10 mol%). The tube was purged with argon for 3 minutes. DCE (2 mL) was added followed by the corresponding allylic carbonate (0.6 mmol, 1.5 equiv) and sulfonyl hydrazides (0.4 mmol, 1.0 equiv). The tube was sealed with a PTFE lined cap and was stirred in an oil bath at 60 °C for 24 h. After cooled down, the crude reaction mixture was directly subjected to flash column chromatography (silica gel, PE/EtOAc = 10:1) to afford the allylic sulfone 3a. Colorless solid, 79.6 mg, 85%. TLC Rf = 0.2 (PE:EA 10:1). 1H NMR (600 MHz, CDCl3) δ 7.71 (d, J = 7.6 Hz, 2H), 7.32 (d, J = 7.5 Hz, 2H), 5.60 (m, 1H), 5.28 (d, J = 10.1 Hz, 1H), 5.05 (d, J = 17.1 Hz, 1H), 3.48 (t, J = 9.6 Hz, 1H), 2.44 (s, 3H), 2.04 (s, 1H), 1.72–1.57 (m, 1H), 1.43 (s, 1H), 1.25 (t, J = 17.8 Hz, 1H), 0.90 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 144.5, 134.6, 130.5, 129.4, 129.2, 123.3, 69.8, 28.9, 21.6, 19.8, 13.5. HRMS (ESI) calcd for C13H18O2SH ([M+H]): 239.1100. Found: 239.1108.