Subscribe to RSS
DOI: 10.1055/a-2708-9202
Recent Advances in Regiodivergent Cross-Dehydrogenative Coupling of Catechols
Authors
Supported by: Uehara Memorial Foundation
Funding Information This work was financially supported by JSPS KAKENHI Grant Number 23K23481 (Grant-in-Aid for Scientific Research [B], to Y.S.) and the Uehara Memorial Foundation.

Dedication
Dedicated to Professor Kazuo Nagasawa on the occasion of his 60th birthday.
Abstract
Catechols exhibit unique chemical properties owing to the presence of two hydroxyl groups on adjacent positions in the benzene ring. Although cross-dehydrogenative coupling reactions of catechols have a long-standing history, with seminal reports dating back to the mid-1890s, they have recently garnered renewed attention as strategies for accessing multisubstituted catechols. Furthermore, achieving catalyst-controlled regioselectivity in these transformations expands their synthetic utility and enables streamlined access to structurally diverse catechol derivatives. In this short review, we highlight the scope and limitations of recently developed strategies for regiodivergent cross-dehydrogenative coupling reactions of catechols. Emphasis is placed on the mechanistic principles that govern regioselectivity, thus providing a foundation for the rational design of future regiodivergent catalytic systems.
Keywords
Regioselectivity - Catechols - Cross-dehydrogenative couplings - ortho-Quinones - Persistent radicalsPublication History
Received: 19 August 2025
Accepted after revision: 23 September 2025
Article published online:
10 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Mahatthananchai J, Dumas AM, Bode JW. Angew Chem Int Ed 2012; 51: 10954
- 2 Trost BM. Science 1983; 219: 245
- 3 For a review on computational investigations of regioselectivity, see. Sigmund LM, Assante M, Johansson MJ, Norrby P-O, Jorner K, Kabeshov M. Chem Sci 2025; 16: 5383
- 4a Jiang Q, Luo J, Zhao X. Green Chem 2024; 26: 1846
- 4b Huang C-Y, Li J, Li C-J. Chem Sci 2022; 13: 5465
- 4c Huang C-Y, Kang H, Li J, Li C-J. J Org Chem 2019; 84: 12705
- 4d Morimoto K, Dohi T, Kita Y. Synlett 2017; 28: 1680
- 5 Kozlowski MC. Acc Chem Res 2017; 50: 638
- 6 Sohtome Y, Sodeoka M. Pure Appl Chem 2024; 96: 5
- 7a Funken N, Zhang Y-Q, Gansäuer. Chem Eur J 2017; 23: 19
- 7b Ping L, Chung DS, Bouffard J, Lee S-G. Chem Soc Rev 2017; 46: 4299
- 7c Nájera C, Beletskaya IP, Yus M. Chem Soc Rev 2019; 48: 4515
- 7d Jeong S, Joo JM. Acc Chem Res 2021; 54: 4518
- 7e Park S. Synthesis 2024; 56: 3083
- 8a Ito S, Sugumaran M, Wakamatsu K. Int J Mol Sci 2020; 21: 6080
- 8b Bolton JL, Dunlap TL, Dietz BM. Food Chem Toxicol 2018; 120: 700
- 9a Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D. Angew Chem Int Ed 2019; 58: 696
- 9b Alfieri ML, Panzella L, Napolitano A. Eur J Org Chem 2024; 27: e202301002
- 10a Albada B, Keijzer JF, Zuilhof H, van Delft F. Chem Rev 2021; 121: 7032
- 10b He Y, Liu Q, He Y, Deng S, Guo J. Chem Sci 2025; 16: 3774
- 11a Lachkar D, Denizot N, Bernadat G. et al. Nat Chem 2017; 9: 793
- 11b Denizot N, Lachkar D, Kouklovsky C, Poupon E, Evanno L, Vincent G. Synthesis 2018; 50: 4229
- 12 Sawama Y, Kuwata S, Mae M, Udagawa T, Akai S, Sajiki H. Chem Commun 2022; 58: 12935
- 13a Sugawara M, Ohnishi R, Ezawa T. et al. ACS Catal 2020; 10: 12770
- 13b Sugawara M, Sawamura M, Akakabe M, Ramadoss B, Sohtome Y, Sodeoka M. Chem Asian J 2022; 17: e202200807
- 13c Iwakiri T, Akakabe M, Inoue A, Sohtome Y, Sodeoka M. Tetrahedron 2025; 185: 134831
- 14a Zhu X-Q, Wang C-H, Liang H. J Org Chem 2010; 75: 7240
- 14b Manh TD, Van Bay M, Thong NM. ChemistrySelect 2025; 10: e202405581
- 15 Hinsberg O, Himmelschein A. Ber Dtsch Chem Ges 2023; 1896: 29
- 16 Wanzlick HW, Lehmann-Horchler M, Mohrmann S, Gritzky R, Heidepriem H, Pankow B. Angew Chem Int Ed 1964; 3: 401
- 17a Pandey G, Bhalerao CMHU. Tetrahedron 1989; 45: 6867
- 17b Leutbecher H, Conrad J, Klaiber I, Beifuss U. Synlett 2005; 28: 3126
- 17c Angeleska S, Kefalas P, Detsi A. Tetrahedron Lett 2013; 54: 2325
- 17d Pietruszka J, Wang C. ChemCatChem 2012; 4: 782
- 17e Pietruszka J, Wang C. Green Chem 2012; 14: 2402
- 17f Suljić S, Mortzfeld FB, Gunne M, Urlacher VB, Pietruszka J. ChemCatChem 2015; 7: 1380
- 17g Krug R, Schröder D, Gebauer J. et al. Eur J Org Chem 2018; 2018: 1789
- 17h Qwebani-Ogunleye T, Kolesnikova NI, Steenkamp P, de Koning CB, Brady D, Wellington KW. Bioorg Med Chem 2017; 25: 1172
- 17i Achari A, Chatterjee S, Dey S, Kundu TK, Jaisankar P. Org Biomol Chem 2023; 21: 89
- 18a Bogle KM, Hirst DJ, Dixon DJ. Org Lett 2007; 9: 4901
- 18b Bogle KM, Hirst DJ, Dixon DJ. Tetrahedron 2010; 66: 6399
- 18c Bogle KM, Hirst DJ, Dixon DJ. Org Lett 2010; 12: 1252
- 19a Askari MS, Esguerra KVN, Lumb J-P, Ottenwaelder X. Inorg Chem 2015; 54: 8665
- 19b Askari MS, Rodríguez-Solano LA, Proppe A, McAllister B, Lumb J-P, Ottenwaelder X. Dalton Trans 2015; 44: 12094
- 19c Xu W, Huang Z, Ji X, Lumb J-P. ACS Catal 2019; 9: 3800
- 19d Huang Z, Ji X, Lumb J-P. Org Lett 2021; 23: 236
- 20 Maeno Z, Yamamoto M, Mitsudome T, Mizugaki T, Jitsukawa K. Catal Sci Technol 2018; 8: 5401
- 21a Xiao X, Greenwood NS, Wengryniuk SE. Angew Chem Int Ed 2019; 58: 16181
- 21b Jalali M, Bissember AC, Yates BF, Wengryniuk SE, Ariafard A. J Org Chem 2021; 86: 12237
- 22 Okada K, Ojima K-I, Ueda H, Tokuyama H. J Am Chem Soc 2023; 145: 16337
- 23a Shalit H, Dyadyuk A, Pappo D. J Org Chem 2019; 84: 1677
- 23b Wu J, Kozlowski MC. ACS Catal 2022; 12: 6532
- 23c Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Angew Chem Int Ed 2020; 59: 2998
- 23d Fatykhov R, Khalymbadzha I, Chupakhin O. Adv Synth Catal 2022; 364: 1052
- 23e Brufani G, Di Erasmo B, Li C-J, Vaccaro L. Chem Sci 2024; 15: 3831
- 24 For a recent review on homolytic aromatic substitution, see. Gurry M, Aldabbagh F. Org Biomol Chem 2016; 14: 3849
- 25a Wu H-R, Huang H-Y. et al. Chem Eur J 2015; 21: 16744
- 25b Basnet P, Sebold MB, Hendrick CE, Kozlowski MC. Org Lett 2020; 22: 9524
- 26a Shalit H, Libman A, Pappo D. J Am Chem Soc 2017; 139: 13404
- 26b Mintz T, More NY, Gaster E, Pappo D. J Org Chem 2021; 86: 18164
- 27 Hovorka H, Günterova J, Zavada JÍ. Tetrahedron Lett 1990; 31: 413
- 28 Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Chem Rev 2025; 125: 3440
- 29a Fischer H. Chem Rev 2001; 101: 3581
- 29b Leifert D, Studer A. Angew Chem Int Ed 2020; 59: 74
- 29c Sohtome Y, Kanomata K, Sodeoka M. Bull Chem Soc Jpn 2021; 94: 1066
- 30 Ohnishi R, Sugawara M, Ezawa T, Sohtome Y, Sodeoka M. Chem Pharm Bull 2020; 68: 895
- 31 Harley-Mason J, Ingleby RF. J Chem Soc 1958; 4782
- 32a Sodeoka M, Hamashima Y. Chem Commun 2009; 2009: 5787
- 32b Sohtome Y, Sodeoka M. Synlett 2020; 31: 523
- 33 Fujii A, Hagiwara E, Sodeoka M. J Am Chem Soc 1999; 121: 5450
For recent reviews on CDC reactions, see:
For recent reviews on regiodivergent catalysis, see:
For general reviews on CDC reaction of phenols, see:
For selected examples, see:
For regiodivergent CDC reaction of phenols, see:
For our accounts, see: