RSS-Feed abonnieren
DOI: 10.1055/a-2708-7132
Harnessing Amino Acids as Dual Synthons: I₂–DMSO/FeCl3-Promoted [3+2+1] Cyclization for Pyrazolo[3,4-d]pyrimidine Synthesis
Autoren
Gefördert durch: Southeast University’s “Zhi-Shan Young Scholars of Excellence” Support Program 2242025RCB0021
Gefördert durch: Jiangsu Province Youth Science and Technology Talent Support Project JSTJ-2024-454
Gefördert durch: National Natural Science Foundation of China 22171098, 22301035
This work was supported by the National Natural Science Foundation of China (Grant No. 22171098, 22301035, 22571111). This work was also supported by Jiangsu Province Youth Science and Technology Talent Support Project (JSTJ-2024-454) and Southeast University's “Zhi-Shan Young Scholars of Excellence” Support Program (2242025RCB0021).

Abstract
The synthesis of pyrazolopyrimidine has attracted considerable attention as its nitrogen-atom-rich bicyclic backbone exhibits diverse bioactivities. We report a facile and straightforward synthesis of 4,6-disubstituted pyrazolo[3,4-d]pyrimidine from α-amino acids and 5-aminopyrazole. This unprecedented transformation is enabled by I2–DMSO reagent combination and facilitated by FeCl3. A domino sequence involving I₂-mediated Strecker degradation of amino acids followed by [3+2+1] cyclization is proposed as the reaction mechanism. Two electronically distinct intermediates derived from amino acid fragmentation act as C1N1 and C1 synthons, respectively, and concurrently participate in the pyrimidine ring cyclization.
Keywords
Pyrazolo[3,4-d]pyrimidine - Amino acids - Domino reaction - Strecker degradation - CyclizationsPublikationsverlauf
Eingereicht: 02. September 2025
Angenommen nach Revision: 24. September 2025
Accepted Manuscript online:
24. September 2025
Artikel online veröffentlicht:
24. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Schenone S, Radi M, Musumeci F, Brullo C, Botta M. Chem Rev 2014; 114: 7189
- 1b Elnagdi M, Al-Awadi N, Abdelhamid I. Compr Heterocycl Chem III 2008; 10: 599
- 1c Kumar V, Kaur K, Gupta GK, Sharma AK. Eur J Med Chem 2013; 69: 735
- 2a Bakavoli M, Bagherzadeh G, Vaseghifar M. et al. Eur J Med Chem 2010; 45: 647
- 2b Soth M. et al. Bioorg Med Chem Lett 2011; 21: 3452
- 2c Gangjee A, Vidwans A, Elzein E, McGuire JJ, Queener SF, Kisliuk RL. J Med Chem 1993; 2001: 44
- 3a Xing Y, Zuo J, Krogstad P, Jung ME. J Med Chem 2018; 61: 1688
- 3b Bouton J, de Almeida F, Fiuza L. et al. J Med Chem 2021; 64: 4206
- 3c Gasonoo M, Guin S, Teixeira JE. et al. J Med Chem 2024; 68: 832
- 4a Somakala K, Tariq S, Amir M. Bioorg Chem 2019; 87: 550
- 4b Devarakonda M, Doonaboina R, Vanga S, Vemu J, Boni S, Mailavaram RP. Med Chem Res 2012; 22: 1090
- 5a Evans LE, Cheeseman MD, Jones K. Org Lett 2012; 14: 3546
- 5b Rostamizadeh S, Nojavan M, Aryan R, Sadeghian H, Davoodnejad M. Chin Chem Lett 2013; 24: 629
- 5c Wang C, Liu H, Song Z. et al. Bioorg Med Chem Lett 2017; 27: 2544
- 6a Rahmani F, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Tangestaninejad S, Mirkhani V. ACS Comb Sci 2017; 20: 19
- 6b Yao G, Zhu C, Qin T. et al. Adv Synth Catal 2023; 365: 1191
- 7 Dang Q, Brown BS, Erion MD. J Org Chem 1996; 61: 5204
- 8a Lu S, Liu P, Wong FF. RSC Adv 2015; 5: 47098
- 8b Yen W, Tsai S, Uramaru N, Takayama H, Wong F. Molecules 2017; 22: 820
- 9a Oliveira-Campos A, Sivasubramanian A, Rodrigues L. et al. Helv Chim Acta 2008; 91: 1336
- 9b Devarakonda M, Doonaboina R, Vanga S, Vemu J, Boni S, Mailavaram RP. Med Chem Res 2012; 22: 1090
- 10 Xing Y, Zuo J, Krogstad P, Jung ME. J Med Chem 2018; 61: 1688
- 11 Shah AA, Chenard LK, Tucker JW, Helal CJ. ACS Comb Sci 2017; 19: 675
- 12a Tsai S-E, Yen W-P, Tseng C-C. et al. Tetrahedron 2018; 74: 2787
- 12b Tseng C, Tsai S, Li S, Wong FF. J Org Chem 2019; 84: 16157
- 13a Kaplan J, Verheijen JC, Brooijmans N. et al. Bioorg Med Chem Lett 2010; 20: 640
- 13b Ng JH, Lim FPL, Tiekink ERT, Dolzhenko AV. Org Biomol Chem 2023; 21: 3432
- 14 Yang D, Xiang J, Wu A. Chem Commun 2024; 60: 14318
- 15a Haugeberg BJ, Phan JH, Liu X, O'Connor TJ, Clift MD. Chem Commun 2017; 53: 3062
- 15b Feng B, Fan W, Su J. Synlett 2015; 26: 2033
- 15c Xiang J, Wang J, Wang M, Meng X, Wu A. Org Biomol Chem 2015; 13: 4240
- 16a Liu H, Zhou F, Luo W, Chen Y, Zhang C, Ma C. Org Biomol Chem 2017; 15: 7157
- 16b Samanta SK, Sarkar R, Sengupta U. et al. Org Biomol Chem 2022; 20: 4650
- 16c Bera MK, Samanta SK. Synthesis 2023; 55: 2561
- 16d Chen T, Ma J-T, Chen X-L. et al. Org Chem Front 2023; 10: 4122
- 17a Xiang J, Wang J, Wang M, Meng X, Wu A. Tetrahedron 2014; 70: 7470
- 17b Feng C, Wei H, Li J, Peng Y, Xu K. Adv Synth Catal 2018; 360: 4726
- 17c Ma J, Wang L, Chai Z. et al. Chem Commun 2021; 57: 5414
- 17d Wu J, Yu L, Li K. et al. J Org Chem 2024; 89: 17031
- 17e Li T, Pan L, Zhang Y. et al. Chin Chem Lett 2024; 35: 108897
- 17f Peng J, Li S, Huang J. et al. J Org Chem 2023; 88: 16581
- 18 Schonberg A, Moubacher R. Chem Rev 1952; 50: 261
- 19 Strekalova S, Kononov A, Budnikova Y. Tetrahedron Lett 2022; 102: 153917
- 20a Zhou Y, Wang L, Lei S. et al. Org Chem Front 2022; 9: 4416
- 20b Zhou Y, Lei S, Abudureheman B. et al. Nat Commun 2024; 15: 10907
- 20c Chai Y, Ren J, Li Y. et al. Molecules 2025; 30: 381
- 20d Zhang W, Zou Q, Wang Q, Jin D, Jiang S, Qian P. J Org Chem 2024; 89: 5434
- 20e Yu Z, Zheng K, Shen X. et al. Org Lett 2024; 26: 7891
- 21 Yang D, Chen X, Wu A. Org Chem Front 2024; 11: 2665
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see: