Subscribe to RSS

DOI: 10.1055/a-2707-4673
Sterically Driven Pathways in Schiff Base Formation: tert-Butyl Effects on Hindered Imines
Authors
Funding InformationThis project was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) and the National Science Foundation (NSF) regarding the 2501 - Joint Support Program with NSF research grant (Project No: 122N411).

Abstract
The ZnCl2/AcOH-mediated condensation of acenaphthenequinone with 2,4,6-tri-tert-butylaniline was explored to prepare a sterically demanding bidentate α-diimine ligand. Contrary to expectation, the reaction consistently afforded 1,2-bis[(2,4-di-tert-butylphenyl)imino]acenaphthene as the major product, together with a mono-substituted imino-ketone, while the fully substituted 1,2-bis[(2,4,6-tri-tert-butylphenyl)imino]acenaphthene was detected only in trace amounts. Spectroscopic analysis (nuclear magnetic resonance, UV/vis, Fourier transform infrared spectroscopy and single-crystal X-ray diffraction, supported by density functional theory calculations, showed that both ligands possess nearly identical electronic structures. However, the additional ortho tert-butyl group in the tri-substituted analogue induces severe steric congestion, twisting the aryl–imine geometry, diminishing π-conjugation, and facilitating acid-promoted tert-butyl elimination. In contrast, the di-substituted ligand adopts a near-planar geometry, enabling straightforward synthesis, crystallization, and full characterization. These results demonstrate that steric effects override electronic factors in dictating the reactivity and stability of highly hindered Schiff bases, providing mechanistic insight and practical design principles for the development of robust, sterically encumbered ligands in coordination chemistry and catalysis.
Keywords
Schiff bases - Steric hindrance - tert-Butyl elimination - Bidentate acenaphthenes - Sterically encumbered ligandsAuthor Contributions
M.M.C. is the only author who created, wrote, and contributed to this work. All data were generated in-house, and no paper mill was used. The author agrees to be accountable for all aspects of work ensuring integrity and accuracy.
Publication History
Received: 13 August 2025
Accepted after revision: 17 September 2025
Accepted Manuscript online:
23 September 2025
Article published online:
22 October 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Kleinhans G, Karhu AJ, Boddaert H, Tanweer S, Wunderlin D, Bezuidenhout DI. Chem Rev 2023; 123: 8781
- 2 Fisher DJ, Shaum JB, Mills CL, de Alaniz R. Org Lett 2016; 18: 5074
- 3 BENCHCHEM 2,4,6-Tri-tert-butyl-N-methylaniline. https://www.benchchem.com/product/b1597436#:~:text=2%2C4%2C6,cytotoxicity%20in%20cancer%20cells
- 4 Leconte N, Thomas F. Redox-Active Ligands 2024; 107
- 5 Bartlett PD, Roha M, Stiles RM. J Am Chem Soc 1954; 76: 2349
- 6 Saleh SA, Tashtoush HI. Tetrahedron 1998; 54: 14157
- 7 Stack DE, Eastman RJ. Label Compd Radiopharm 2016; 59: 500
- 8 Huang M, Wang Q, Yi X. et al. ChemComm 2016; 52: 10606
- 9 Barclay LRC, Carson DL, Gray JA. et al. Can J Chem 1978; 56: 2665
- 10 Mahoney LR, DaRooge MAJ. Am Chem Soc 1970; 92: 890
- 11 Korth H-G. Angew Chem, Int Ed 2014; 53: 934
- 12 Hammi N, Chen S, Dumeignil F, Royer S, El Kadib A. Mater Today Sustainability 2020; 10: 100053
- 13 Chen F-M, Huang F-D, Yao X-Y, Li T, Liu F-S. Org Chem Front 2017; 4: 2336
- 14 Noël T, Musacchio AJ. Org Lett 2011; 13: 5180
- 15 Hu L-Q, Deng R-L, Li Y-F, Zeng C-J, Shen D-S, Liu F-S. Organometallics 2018; 37: 214
- 16 Pappalardo D, Mazzeo M, Antinucci S, Pellecchia C. Macromolecules 2000; 33: 9483
- 17 Gasperini M, Ragaini F, Cenini S. Organometallics 2002; 21: 2950
- 18 Hasan K, Zysman-Colman EJ. Phy Org Chem 2013; 26: 274
- 19 Khrizanforova VV, Fayzullin RR, Gerasimova TP. et al. Int J Mol Sci 2023; 24: 8667
- 20 Evans DA, Lee LM, Vargas-Baca I, Cowley AH. Dalton Trans 2015; 44: 11984
- 21 Kee JW, Ng YY, Kulkarni SA. et al. Inorg Chem Front 2016; 3: 651
- 22 Fumoto T, Tanaka R, Ooyama Y. Dalton Trans 2023; 52: 5047
- 23 Frisch MJ, Trucks GW, Schlegel HB. et al. Gaussian 16 Rev. C.01. Wallingford, CT: 2016
- 24 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GRJ. Cheminf 2012; 4: 17
- 25 Sheldrick G. Acta Crystallogr C 2015; 71: 3
- 26 Sheldrick G. Acta Crystallogr A 2008; 64: 112
- 27 Balzadeh Z, Arabi H. React Funct Polym 2017; 111: 68
- 28 Schrauzer GN, Mayweg V. J Am Chem Soc 1962; 84: 3221
- 29 Mak CSK, Wong HL, Leung QY, Tam WY, Chan WK, Djurišić AB. J Organomet Chem 2009; 694: 12770-12776
- 30 Salohiddinov S, Vignesh A, Li Z, Ma Y, Sun W-H. J Organomet Chem 2021; 951: 122002
- 31 Wang J, Ganguly R, Yongxin L, Díaz J, Soo HS, García F. Inorg Chem 2017; 56: 7811
- 32 Thiele J, Dimroth O. Dtsch Chem Ges 1895; 28: 1411
- 33 Wekesa FS, Arias-Ugarte R, Kong L, Sumner Z, McGovern GP, Findlater M. Organometallics 2015; 34: 5051
- 34 Sandl S, Maier TM, van Leest NP. et al. ACS Catal 2019; 9: 7596