RSS-Feed abonnieren
DOI: 10.1055/a-2705-6689
Efficient Oxidation of Internal Alkynes to 1,2-Diketone Compounds Catalyzed by a Binuclear Ruthenium Complex
Autoren
Gefördert durch: Fundamental Research Funds for the Central Universities DUT22LAB612,DUT24ZD132
Gefördert durch: National Natural Science Foundation of China 22172014,22372024
Gefördert durch: Foundation of Guizhou Educational Committee qianjiaoji [2023] 088
Funding Information The authors are grateful to the National Natural Science Foundation of China (nos. 22172014 and 22372024) and the Fundamental Research Funds for the Central Universities (no. DUT24ZD132 and DUT22LAB612), “Excellence Co-Innovation Program” International Exchange Fund Project (no. DUTIO-ZG-202505), and the Foundation of Guizhou Educational Committee (no. qianjiaoji [2023] 088) for their financial support.

Abstract
Structurally methane monooxygenase (MMO) active site-like new binuclear ruthenium complex-catalyzed oxidation of internal alkynes is described. The direct catalytic oxidation of internal alkynes proceeded smoothly and completed within 15 min in the presence of NaIO4 as the oxidant to produce 1,2-diketone products in high to excellent yields. The binuclear ruthenium complex can be easily prepared and handled, and it has high catalytic activity (TOFmax = 5778 h−1) and a long lifetime (TONmax = 52,000). Various synthetically useful functional groups, such as halogen atoms, acetyl, and TMS, remain intact during the oxidation of internal alkynes.
Publikationsverlauf
Eingereicht: 13. Juli 2025
Angenommen nach Revision: 02. September 2025
Accepted Manuscript online:
19. September 2025
Artikel online veröffentlicht:
27. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Liu Y-P, Guo J-M, Yan G. et al. J Agric Food Chem 2019; 67: 817
- 1b Wadkins RM, Hyatt JL, Wei X. et al. J Med Chem 2005; 48: 2906
- 1c Nicolaou KC, Gray DLF, Tae J. J Am Chem Soc 2004; 126: 613
- 2a Tan P, Wang SR. Org Lett 2019; 21: 6029
- 2b De Luca L, Mezzetti A. Angew Chem Int Ed 2017; 56: 11949
- 2c Guo L, Gao H, Quan Q. et al. Organometallics 2012; 31: 6054
- 2d Boyce GR, Johnson JS. Angew Chem Int Ed 2010; 49: 8930
- 2e Herrera AJ, Rondon M, Suarez E. J Org Chem 2008; 73: 3384
- 2f Wolkenberg SE, Wisnoski DD, Leister WHYW, Zhao Z, Lindsley CW. Org Lett 2004; 6: 1453
- 3 Yuan L-Z, Hamze A, Alami M, Provot O. Synthesis 2017; 49: 504
- 4 Srinivasan NS, Lee DG. J Org Chem 1979; 44: 1574
- 5 Schroder M, Griffith WP. J Chem Soc, Dalton Trans 1978; 11: 1599
- 6 Ogata Y, Sawaki Y, Ohno T. J Am Chem Soc 1982; 104: 216
- 7 Chu J-H, Chen Y-J, Wu M-J. Synthesis 2009; 13: 2155
- 8 McDonald RN, Schwab PA. J Am Chem Soc 1964; 86: 4866
- 9a Dubovtsev YA, Shcherbakov NV, Dar’in DV, Kukushkin VY. J Org Chem 2020; 85: 745
- 9b Xu N, Gu DW, Dong YS. et al. Tetrahedron Lett 2015; 56: 1517
- 9c Xu Y, Wan X. Tetrahedron Lett 2013; 54: 642
- 9d Zhang W, Zhang J, Liu Y, Xu Z. Synlett 2013; 24: 2709
- 9e Liu Y, Chen X, Zhang J, Xu Z. Synlett 2013; 24: 1371
- 9f Gao A, Yang F, Li J, Wu Y. Tetrahedron 2012; 68: 4950
- 9g Muzard J. J Mol Catal A: Chem 2011; 338: 7
- 9h Tummatorn J, Khorphueng P, Petsom A, Muangsin N, Chaichit N, Roengsumran S. Tetrahedron 2007; 63: 11878
- 10a Feng D, Zheng R, Li Z, Geng X, Wang L. Org Chem Front 2025; 12: 4305
- 10b Feng D, Geng X, Zuo L, Li Z, Wang L. Adv Sci 2025; 12: 2501310
- 10c Shen D, Zhong F, Ren T. et al. J Org Chem 2023; 88: 15270
- 10d Charpe VP, Sagadevan A, Hwang KC. Green Chem 2020; 22: 4426
- 10e Qin H-T, Xu X, Liu F. ChemCatChem 2017; 9: 1409
- 10f Zhu X, Li P, Shi Q, Shia Q, Wang L. Green Chem 2016; 18: 6373
- 10g Liu X, Cong T, Liu P, Sun P. J Org Chem 2016; 81: 7256
- 11 Zhou J, Tao X-Z, Dai J-J. et al. Chem Commun 2019; 55: 9208
- 12a Liu X, Dong W, Liu Y. et al. ChemCatChem 2023; 15: e202300817
- 12b Li W, Zhang S, Feng X, Yu X, Yamamoto Y, Bao M. Org Lett 2021; 23: 2521
- 12c Chen X, Zhou X, Feng X, Bao M. Synthesis 2020; 53: 1121
- 13 Xie F, Zhang S, Yu X, Feng X, Bao M. Asian J Org Chem 2025; early view e202500201
- 14a Bertini S, Henryon D, Edmunds AJF, Albrecht M. Org Lett 2022; 24: 1378
- 14b De Joarder D, Gayen S, Sarkar R, Bhattacharya R, Roy S, Maiti DK. J Org Chem 2019; 84: 8468
- 14c Zhong Y-Q, Xiao H-Q, Yi X-Y. Dalton Trans 2016; 45: 18113
- 14d Daw P, Petakamsetty R, Sarbajna A, Laha S, Ramapanicker R, Bera JK. J Am Chem Soc 2014; 136: 13987
- 15a Zhang C, Zhang Z, Wang D. et al. Chem Commun 2023; 59: 5217
- 15b Harsha KB, Rangappa KS. RSC Adv 2016; 6: 57154
- 15c Vidal-Albalat A, Rodríguez S, Gonzalez FV. Org Lett 2014; 16: 1752
- 15d More SV, Sastry MNV, Wang C-C, Yao C-F. Tetrahedron Lett 2005; 46: 6345
- 16 Yang Y, Yao J, Zhang Y. Org Lett 2013; 15: 3206
- 17 Yip W-P, Yu W-Y, Zhu N, Che C-M. J Am Chem Soc 2005; 127: 14239
- 18a Gupta SK, Choudhury J. Chem Commun 2016; 52: 3384
- 18b Gupta SK, Sahoo SK, Choudhury J. Organometallics 2016; 35: 2462
- 19 Ruengsangtongkul S, Chaisan N, Thongsornkleeb C, Tummatorn J, Tummatorn J, Ruchirawat S. Org Lett 2019; 21: 2514
- 20 Moran MJ, Martina K, Bieliunas V. et al. Adv Synth Catal 2021; 363: 2850
- 21 Fan T-Y, Wu W-Y, Yu S-P. et al. Bioorg Med Chem Lett 2019; 29: 126772
- 22 Patureau FW, Besset T, Kuhl N, Glorius F. J Am Chem Soc 2011; 133: 2154
- 23 Zhai Y, Sua Z, Jiang H, Rong J, Qiu X, Tao C. Tetrahedron Lett 2019; 60: 843
- 24 Kumar Y, Jaiswal Y, Kumar A. Eur J Org Chem 2018; 4: 494
- 25 Shen D, Wang H, Zheng Y. et al. J Org Chem 2021; 86: 5354
- 26 Seyferth D, Hui RC, Wang W-L. J Org Chem 1993; 58: 5843
- 27 Salem MSH, Dubois C, Takamura Y. et al. Green Chem 2024; 26: 375
- 28 Han W, Jin F, Zhou Q. Synthesis 2015; 47: 1861
- 29 Lupidi G, Palmieri A, Petrini M. Green Chem 2022; 24: 3629
- 30 Chen J, Zhang Z, Liu D, Zhang W. Angew Chem Int Ed 2016; 55: 8444
For a review, see: