RSS-Feed abonnieren
DOI: 10.1055/a-2701-6195
Cobalt-Catalyzed C-2 Functionalization of N-Methylindole-1-carboxamide via Regioselective Hydroindolation of 1,6-Diyne
Autoren
We are thankful to NISER, the Department of Atomic Energy (DAE), IISER Tirupati, Science and Engineering Research Board (SERB), New Delhi (Grant CRG/2021/007153) for financial support.

Abstract
In this study, we present the novel reactivity of a cobalt(III) catalyst in the context of the functionalization of 1,6-diynes. Our mechanistic investigation reveals the intrinsic formation of a five-membered cobaltacycle, which subsequently undergoes migratory insertion with 1,6-diynes. Additionally, radical trapping studies provide compelling evidence supporting the involvement of an ionic pathway in this transformation. Furthermore, the deuterium exchange experiment lends further support to our proposed mechanism. Significantly, this methodology exhibits extensive versatility, accommodating a diverse array of electronically distinct substrates and reactive partners in a highly atom-efficient manner.
Keywords
Hydroindolation - 1,6-Diyne - Earth-abundant cobalt catalyst - C–H activation - Strong-chelationPublikationsverlauf
Eingereicht: 02. August 2025
Angenommen nach Revision: 14. September 2025
Accepted Manuscript online:
14. September 2025
Artikel online veröffentlicht:
21. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Jampilek J. Molecules 2019; 24: 3839
- 1b Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 1909; 2020: 25
- 2a Huang H, Ji X, Wu W, Jiang H. Chem Soc Rev 2015; 44: 1155-1171
- 2b Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem Soc Rev 2016; 45: 2900-2936
- 2c Wang F, Yu S, Li X. Chem Soc Rev 2016; 45: 6462-6647
- 2d Wei Y, Hu P, Zhang M, Su W. Chem Rev 2017; 117: 8864-8907
- 2e Park Y, Kim Y, Chang S. Chem Rev 2017; 117: 9247-9301
- 3a Dalton T, Faber T, Glorius F. ACS Cent Sci 2021; 7: 245-261
- 3b Shabani S, Wu Y, Ryan HG, Hutton CA. Chem Soc Rev 2021; 50: 9278-9343
- 4a Lee DH, Taher A, Hossain S, Jin MJ. Org Lett 2011; 13: 5540-5543
- 4b Li S, Lin Y, Xie H, Zhang S, Xu J. Org Lett 2006; 8: 391-394
- 4c Mehnert CP, Weaver DW, Ying JY. J Am Chem Soc 1998; 120: 12289-12296
- 4d Bozell JJ, Vogt CE. J Am Chem Soc 1988; 110: 2655-2657
- 4e Calò V, Nacci A, Monopoli A, Cotugno P. Angew Chem Int Ed 2009; 121: 6217-6219
- 5a Obora Y, Moriya H, Tokunaga M, Tsuji Y. Chem Commun 2003; 3: 2820-2821
- 5b Korenaga T, Ko A, Uotani K, Tanaka Y, Sakai T. Angew Chem Int Ed 2011; 50: 10703
- 5c Jin MJ, Lee DH. Angew Chem Int Ed 2010; 49: 1119
- 5d Yang X, Fei Z, Zhao D, Wee HA, Li Y, Dyson PJ. Inorg Chem 2008; 47: 3292-3297
- 5e Shirakawa E, Tamakuni F, Kusano E. et al. Angew Chem Int Ed 2014; 53: 531-535
- 6a Ritleng V, Sirlin C, Pfeffer M. Chem Rev 2002; 102: 1731-1769
- 6b Lyons TW, Sanford MS. Chem Rev 2010; 110: 1147-1169
- 6c Le Bras J, Muzart J. Chem Rev 2011; 111: 1170-1214
- 7a Docherty JH, Lister TM, Mcarthur G. et al. Chem Rev 2023; 123: 7692-7760
- 7b Suseelan Sarala A, Bhowmick S, Carvalho RL. et al. Adv Synth Catal 2021; 363: 4994-5027
- 7c Liu SL, Ye C, Wang X. Org Biomol Chem 2022; 20: 4837-4845
- 8 Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem Rev 2017; 117: 9333-9403
- 9a Gulias M, Mascarenas JL. Angew Chem Int Ed 2016; 55: 11000-11019
- 9b Zeng R, Wu S, Fu C, Ma S. J Am Chem Soc 2013; 135: 18284-18287
- 10a Banjare SK, Mahulkar PS, Nanda T, Pati BV, Najiar LO, Ravikumar PC. Chem Commun 2022; 58: 10262-10289
- 10b Santhoshkumar R, Cheng CH. Beilstein J Org Chem 2018; 14: 2266-2288
- 11a Yadav SK, Jeganmohan M. Chem Commun 2024; 60: 8296-8299
- 11b Yadav SK, Jeganmohan M. J Org Chem 2023; 88: 14454-14469
- 12 Banjare SK, Afreen S, Mahulkar PS, Saxena A, Ravikumar PC. Adv Synth Catal 2023; 365: 1977-1982
- 13a Taylor RD, Maccoss M, Lawson ADG. J Med Chem 2014; 57: 5845-5859
- 13b Liu H, Jia Y. Nat Prod Rep 2017; 34: 411-432
- 13c McCabe SR, Wipf P. Org Biomol Chem 2016; 14: 5894-5913
- 14a Sandtorv AH. Adv Synth Catal 2015; 357: 2403-2435
- 14b Wang X, Lane BS, Sames D. J Am Chem Soc 2005; 127: 4996-4997
- 14c Stuart DR, Villemure E, Fagnou K. J Am Chem Soc 2007; 129: 12072-12073
- 14d Deprez NR, Kalyani D, Krause A, Sanford MS. J Am Chem Soc 2006; 128: 4972-4973
- 14e Lebrasseur N, Larrosa I. J Am Chem Soc 2008; 130: 2926-2927
- 14f Zhang W, Wei J, Fu S, Lin D, Jiang H, Zeng W. Org Lett 2015; 17: 1349-1352
- 15 Li Q, Wang Y, Li B, Wang B. Org Lett 2018; 20: 7884-7887
- 16a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem Rev 2019; 119: 2192-2452
- 16b St John Campbell S, Bull JA. Adv Synth Catal 2019; 361: 3662-3682
- 17a Simmons EM, Hartwig JF. Angew Chem Int Ed 2012; 51: 3066-3072
- 17b Santhoshkumar R, Mannathan S, Cheng CH. J Am Chem Soc 2015; 137: 16116-16120
- 17c Bera SS, Debbarma S, Ghosh AK, Chand S, Maji MS. J Org Chem 2017; 82: 420-430
- 17d Banjare SK, Saxena A, Nanda T, Prusty N, Joshi S, Ravikumar PC. Org Lett 2023; 25: 251-255