RSS-Feed abonnieren
DOI: 10.1055/a-2685-9396
Pseudouridine-Modified Phosphorodiamidate Morpholino Oligonucleotides: Synthesis and Biophysical Insights
SS thanks the Department of Science and Technology (DST), New Delhi, Government of India (DST/TDT/TC/RARE/2022/10c2) for grant support.

Abstract
The synthesis of morpholino pseudouridine chlorophosphoramidate monomer from pseudouridine and its incorporation in a 12-mer phosphorodiamidate morpholino oligonucleotide (PMO) has been successfully achieved. Thermal melting (T m) of this PMO was performed with the complementary strand of DNA and RNA. In the case of RNA, the T m of the base pairing between pseudouridine with A and G was comparable. Circular dichroism analysis reveals the B-type helical conformation of PMO–RNA duplexes. These advancements are expected to broaden the potential applications of PMOs in biomedical research.
Keywords
Morpholino pseudouridine - Oligonucleotides - Thermal denaturation analysis - Circular dichroism - Antisense agentsPublikationsverlauf
Eingereicht: 31. Juli 2025
Angenommen nach Revision: 18. August 2025
Accepted Manuscript online:
19. August 2025
Artikel online veröffentlicht:
18. September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Charette M, Gray MW. IUBMB Life 2000; 49: 341-351
- 2 Li X, Ma S, Yi C. Curr Opin Chem Biol 2016; 33: 108-116
- 3 Motorin Y, Helm M. Wiley Interdisc Rev: RNA 2011; 2 (05) 611-631
- 4a Karikó K, Buckstein M, Ni H, Weissman D. Immunity 2005; 23 (02) 165-175
- 4b Ho LL, Schiess GH, Miranda P, Weber G, Astakhova K. RSC Chem Biol 2024; 5 (05) 418-425
- 5 Nance KD, Meier JL. ACS Cent Sci 2021; 7 (05) 748-756
- 6a Summerton J, Weller D. Antisense Nucleic Acid Drug Dev 1997; 7: 187-195
- 6b Summerton JE. Biochim Biophys Acta 1999; 1489: 141-158
- 7a Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Nat Rev Dis Primers 2021; 7: 13
- 7b Gupta S, Sharma SN, Kundu J, Pattanayak S, Sinha S. J BioSci 2023; 48: 38
- 7c Egli M, Manoharan M. Nucleic Acids Res 2023; 51: 2529-2573
- 8a Pattanayak S, Paul S, Nandi B, Sinha S. Nucleosides Nucleotides Nucleic Acids 2012; 31: 763-782
- 8b Pattanayak S, Sinha S. Tetrahedron Lett 2012; 53: 6714-6717
- 8c Kundu J, Ghosh A, Ghosh U. et al. J Org Chem 2022; 87: 9466-9478
- 8d Das A, Ghosh A, Sinha S. Org Biomol Chem 2023; 21: 1242-1253
- 9a Sinha S, Das A, Pratihar S, Sharma SN, Kundu J. Chemrxiv 2025 https://chemrxiv.org/engage/chemrxiv/article-details/679a1eff6dde43c908d62731
- 9b Kundu J, Ghosh U, Ghosh A, Pattanayak S, Das A, Sinha S. Curr Protoc Nucleic Acid Chem 2023; 3: 1-25
- 10 Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R. Nucleic Acids Res 2014; 42 (05) 3492-3501
- 11 Davis DR. Nucleic Acids Res 1995; 23 (24) 5020-5026
- 12a Hudson GA, Bloomingdale RJ, Znosko BM. RNA 2013; 19 (11) 1474-1482
- 12b Deb I, Popenda Ł, Sarzyńska J. et al. Sci Rep 2019; 9 (01) 16278
- 13a Davis DR, Poulter CD. Biochemistry 1991; 30 (17) 4223-4231
- 13b Hall KB, McLaughlin LW. Nucleic Acids Res 1992; 20 (08) 1883-1889
- 14 Parr CJ, Wada S, Kotake K. et al. Nucleic Acids Res 2020; 48 (06) e35-e35
- 15a Abeysirigunawardena SC, Chow CS. RNA 2008; 14 (04) 782-792
- 15b Meroueh M, Grohar PJ, Qiu J, SantaLucia Jr J, Scaringe SA, Chow CS. Nucleic Acids Res 2000; 28 (10) 2075-2083