Subscribe to RSS
DOI: 10.1055/a-2685-9334
Pd-Catalyzed Decarboxylative Couplings of Aryl Triazine Esters With Zinc Polyfluorobenzoates
Authors
Funding Information The authors gratefully acknowledge the financial support from Nanjing Tech University (Start-up Grant No. 39837118).

Dedication
Dedicated to Professor Paul Knochel on the occasion of his 70th birthday.
Abstract
A Pd-catalyzed decarboxylative cross-coupling using zinc polyfluorobenzoates as robust polyfluoroarylating agents and aryl triazine esters as effective benzoylating reagents was realized, enabling the facile assembly of a wide array of valuable polyfluorinated aryl ketones in moderate to good yields. A variety of functional groups could be well tolerated in the protocol, and the reaction could be scaled up as well. Especially noteworthy is that one-pot reaction by directly adding polyfluorobenzoic acid and Zn(OH)2 to the decarboxylative reaction as a precursor to in situ form zinc polyfluorobenzoate could also be successfully achieved, thereby providing a more practical, step-economic, and cost-effective approach for accessing polyfluorinated aryl ketones. Control experiments showed that zinc pentafluorobenzoate was superior to other metallic counterparts.
Keywords
Palladium catalysis - Decarboxylative reaction - Zinc polyfluorobenzoate - Aryl triazine ester - Polyfluorinated aryl ketonePublication History
Received: 24 July 2025
Accepted after revision: 18 August 2025
Accepted Manuscript online:
18 August 2025
Article published online:
30 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881-1886
- 1b Hird M. Chem Soc Rev 2007; 36: 2070-2095
- 1c Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem Soc Rev 2011; 40: 3496-3508
- 1d Böhm H-J, Banner D, Bendels S. et al. ChemBioChem 2004; 5: 637-643
- 1e Jiang W, Sánchez-Roselló M, Aceña JL. et al. Chem Rev 2014; 114: 2432-2506
- 1f Tirotta I, Dichiarante V, Pigliacelli C. et al. Chem Rev 2015; 115: 1106-1129
- 1g Wang Q, Bian YP, Dhawan G. et al. Chin Chem Lett 2024; 35: 109780
- 1h Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem Rev 2022; 122: 167-208
- 1i Fuchigami T, Inagi S. Acc Chem Res 2020; 53: 322-334
- 1j He JR, Li ZY, Dhawan G. et al. Chin Chem Lett 2023; 34: 107578
- 2a Baskakis C, Magrioti V, Cotton N. et al. J Med Chem 2008; 51: 8027-8037
- 2b Wang F, Cao X, Mei L, Zhang X, Hu J, Tao Y. Chin J Chem 2018; 36: 241-246
- 2c Zhang X, Lu X, Zhen YG. et al. Mater Chem C 2014; 2: 5083-5086
- 2d Tang H, Huang B, Xie X, Yan T, Cai M. J Polym Res 2018; 25: 51
- 2e Kalhor-Monfared S, Jafari MR, Patterson JT. et al. Chem Sci 2016; 7: 3785-3790
- 2f Korn TJ, Schade MA, Wirth S, Knochel P. Org Lett 2006; 8: 725-728
- 2g Shigeno M, Hayashi K, Sasamoto O. et al. J Am Chem Soc 2024; 146: 32452-32462
- 2h Uchida K, Ishida S, Iwamoto T. Eur J Org Chem 2022; 24: e202200522
- 2i Touge T, Nara H, Fujiwhara M, Kayaki Y, Ikariya T. J Am Chem Soc 2016; 138: 10084-10087
- 2j Pang Y, He Q, Li Z-Q. et al. J Am Chem Soc 2018; 140: 10663-10668
- 2k Nan X-L, Wang Y, Li X-B, Tung C-H, Wu L-Z. Chem Commun 2021; 57: 6768-6771
- 2l Martinez-Erro S, Sanz-Marco A, Gómez AB, Vázquez-Romero A, Ahlquist MSG, Martín-Matute B. J Am Chem Soc 2016; 138: 13408-13414
- 2m Subaramanian M, Sivakumar G, Landge VG. et al. J Catal 2023; 425: 386-405
- 3a Ebert G, Rieke RD. J Org Chem 1984; 49: 5280-5282
- 3b Inaba S, Rieke RD. J Org Chem 1985; 50: 1373-1381
- 3c Ebert GW, Rieke RD. J Org Chem 1988; 53: 4482-4488
- 3d Kremlev MM, Tyrra W, Naumann D, Yagupolskii YL. J Fluorine Chem 2005; 126: 1327-1331
- 3e Melzig L, Diène CR, Rohbogner CJ, Knochel P. Org Lett 2011; 13: 3174-3177
- 3f Ojo W-S, Jacob K, Despagnet-Ayoub E. et al. Inorg Chem 2012; 51: 2893-2901
- 3g Kremlev MM, Mushta AI, Tyrra W, Yagupolskii YL, Naumann D, Schäfer M. Dalton Trans 2015; 44: 19693-19699
- 4a Chen LS, Tamborski C. J Fluorine Chem 1981; 19: 43-53
- 4b Cheng K, Zhao B, Qi C. RSC Adv 2014; 4: 48698-48702
- 4c Chang S, Wang JF, Dong LL, Wang D, Feng B, Shi YT. RSC Adv 2017; 7: 51928-51934
- 5a Chang S, Jin Y, Zhang XR, Sun YB. Tetrahedron Lett 2016; 57: 2017-2020
- 5b Hao CY, Wang D, Li Y-W. et al. RSC Adv 2016; 6: 86502-86509
- 6 Lian Z, Friis SD, Skrydstrup T. Chem Commun 2015; 51: 1870-1873
- 7a Albéniz AC, Espinet P, Manrique R, Pérez-Mateo A. Angew Chem Int Ed 2002; 41: 2363-2366
- 7b Cheng K, Wang GF, Meng MT, Qi CZ. Org Chem Front 2017; 4: 398-403
- 7c Meng MT, Yang LF, Cheng K, Qi CZ. J Org Chem 2018; 83: 3275-3284
- 7d Song T, Ma ZM, Ren P, Yuan YZ, Xiao JL, Yang Y. ACS Catal 2020; 10: 4617-4629
- 8a Bao Z-P, Yang H, ; A, R-H. Wang Y, Wu X-F. Chin Chem Lett 2025; 36: 111150
- 8b Yang H, Wang L-C, Wu X-F. Chin Chem Lett 2025; 36: 110843
- 8c Yang M, Liu Y, Qi X, Zhao Y, Wu X-F. Green Synth Catal 2024; 5: 211-269
- 8d Zhang J, Wu X-F. Chin J Catal 2025; 73: 146-152
- 8e Bao Z-P, Sun N-X, Wu X-F. Chin J Catal 2024; 60: 171-177
- 8f Yang M, Liu Y, Yang P, Zhao Y, Wu X-F. Sci China Chem 2025; 68: 2485-2490
- 9a Gooßen LJ, Rodríguez N, Gooßen K. Angew Chem Int Ed 2008; 47: 3100-3120
- 9b Rodríguez N, Goossen LJ. Chem Soc Rev 2011; 40: 5030-5048
- 9c Shang R, Liu L. Sci China Chem 2011; 54: 1670-1687
- 9d Cui W, Li Y, Li X. et al. Chin Chem Lett 2023; 34: 107477
- 9e Dzik WI, Lange PP, Gooßen L. J Chem Sci 2012; 3: 2671-2678
- 9f Gooßen LJ, Deng G, Levy LM. Science 2006; 313: 662-664
- 9g Lu Y-H, Zhang Z-T, Wu H-Y. et al. Chin Chem Lett 2023; 34: 108036
- 9h Daley RA, Topczewski JJ. Synthesis 2020; 52: 365-377
- 10a Becht J-M, Catala C, Le Drian C, Wagner A. Org Lett 2007; 9: 1781-1783
- 10b Becht J-M, Le Drian C. Org Lett 2008; 10: 3161-3164
- 10c Voutchkova A, Coplin A, Leadbeater NE, Crabtree RH. Chem Commun 2008; 6312-6314
- 10d Shang R, Fu Y, Wang Y, Xu Q, Yu H-Z, Liu L. Angew Chem Int Ed 2009; 48: 9350-9354
- 10e Shang R, Xu Q, Jiang Y-Y, Wang Y, Liu L. Org Lett 2010; 12: 1000-1003
- 10f Sardzinski LW, Wertjes WC, Schnaith AM, Kalyani D. Org Lett 2015; 17: 1256-1259
- 10g Daley RA, Liu E-C, Topczewski JJ. Org Lett 2019; 21: 4734-4758
- 10h Chen Q, Wu A, Qin S. et al. Adv Synth Catal 2018; 360: 3239-3244
- 10i Liang L, Wang Y-H, Li C. et al. Org Chem Front 2022; 9: 5832-5839
- 10j Fu L, You J, Nishihara Y. Chem Commun 2021; 57: 3696-3699
- 10k Liu K, Ding D, Xing W. et al. Org Biomol Chem 2023; 21: 1384-1388
- 10l Lange PP, Gooßen LJ, Podmore P, Underwood T, Sciammetta N. Chem Commun 2011; 47: 3628-3630
- 11 Fu LY, Chen Q, Nishihara Y. Org Lett 2020; 22: 6388-6393
- 12a Blotny G. Tetrahedron Lett 2006; 62: 9507-9522
- 12b Wu H, Xu B, Li Y. et al. J Org Chem 2016; 81: 2987-2992
- 12c Yu B, Sun H, Xie Z. et al. Org Lett 2015; 17: 3298-3301
- 12d He Z, Wang Z, Ru J, Wang Y, Liu T, Zeng Z. Adv Synth Catal 2020; 362: 5794-5802
- 12e Falorni M, Giacomelli G, Porcheddu A, Taddei M. J Org Chem 1999; 64: 8962-8964
- 12f De Luca L, Giacomelli G, Porcheddu A. Org Lett 2001; 3: 1519-1521
- 12g Feng Y, Wang Y, Zhao S. et al. Org Chem Front 2020; 7: 3420-3426
- 12h Liu X, He C-Y, Yin H-N. et al. Chin J Chem 2023; 41: 3539-3546
- 12i Wang Q-D, Liu X, Zheng Y-W. et al. Org Lett 2024; 26: 416-420
- 13a Wang J, Cui Y, Xie S. et al. Org Lett 2024; 26: 137-141
- 13b Zhang C, Cui Y, Zhou X. et al. Org Lett 2025; 27: 2256-2261
- 14a Yang B-W, Xu J, Pan J. et al. J Org Chem 2025; 90: 5480-5486
- 14b Gui C, Zhou Y, Tian H-F. et al. Org Biomol Chem 2025; 23: 5569
- 15 Du H-J, Cao X-R, Su H-J. et al. Org Lett 2025; 27: 5887-5893
- 16a Song X-D, Guo M-M, Xu S. et al. Org Lett 2021; 23: 5118-5122
- 16b Zhang C, Ma N-N, Yu Z-L. et al. Org Chem Front 2021; 8: 4865-4870
- 16c Cui Y-Y, Li W-X, Ma N-N. et al. Org Chem Front 2021; 8: 6931-6936
- 16d Ma N-N, Ren J-A, Liu X, Chu X-Q, Rao W, Shen Z-L. Org Lett 2022; 24: 1953-1957
- 16e Li W-X, Yang B-W, Ying X. et al. J Org Chem 2022; 87: 11899-11908
- 16f Guo M-M, Song X-D, Liu X. et al. Adv Synth Catal 2022; 364: 2454-2460
- 16g Ma N-N, Hu X-B, Wu Y-S. et al. Org Lett 2023; 25: 1771-1775
- 16h Na J-H, Liu X, Jing J-W. et al. Org Lett 2023; 25: 2318-2322
- 16i Ren J-A, Na J-H, Gui C. et al. Org Lett 2023; 25: 5525-5529
- 16j Ren J-A, Chen X, Gui C. et al. Adv Synth Catal 2023; 365: 2511-2515
- 16k Xu H, He C-Y, Huo B-J. et al. Org Chem Front 2023; 10: 5171-5179
- 16l Guo M-M, Qin G-Q, Jiang X-Y. et al. Adv Synth Catal 2023; 365: 1871-1876
- 16m Qin G-Q, Wang J, Cao X-R. et al. J Org Chem 2024; 89: 13735-13743
- 16n Han X-W, He Y, Gui C. et al. J Org Chem 2024; 89: 13661-13668
- 16o Hu X-B, Fu Q-Q, Huang X-Y. et al. Molecules 2024; 29: 831
- 16p Chen X, Xu M-K, Zhang X-Q. et al. Adv Synth Catal 2024; 366: 3839-3844
- 16q Hu X-B, Chen Y, Zhu C-L. et al. J Org Chem 2024; 89: 13601-13607
- 16r Na J-H, Du H-J, Jing J-W. et al. J Catal 2024; 437: 115636
- 17a Wang Q-D, Zhang S-X, Zhang Z-W. et al. Org Lett 2022; 24: 4919-4924
- 17b Chen X, Liang Y, Wang W-W. et al. Molecules 2024; 29: 1991
- 17c Huo B-J, Wang W-W, Huang Y-J. et al. Org Lett 2024; 26: 7763-7768
- 17d Fu Q-Q, Liang Y, Sun X-X. et al. Org Lett 2024; 26: 8577-8582
- 17e Li W-X, Huo B-J, Huang J-Y. et al. J Catal 2024; 430: 115359
- 17f Xu H, Jing J-W, Chen Y-B. et al. J Org Chem 2025; 90: 2341-2347
- 17g Wang Q-D, Ren J-A, Cao X-R, Zhou X, Yang J-M, Shen Z-L. Org Biomol Chem 2025; 23: 1412-1417
- 17h Han X-W, Wu Y-S, Wu T. et al. Tetrahedron 2025; 176: 134558
- 17i Wang Q-D, Chen X, Wu Y-S, Miao C, Yang J-M, Shen Z-L. Chem Asian J 2025; 20: e202401873
- 17j Huo B-J, Wu Y-S, Miao C, Zhou X, Chen W, Shen Z-L. Tetrahedron 2025; 183: 134705
- 17k He Y, Pan J, Yan Y. et al. Chin J Chem 2025; 43: 2151-2158
- 17l Xu M-K, Zhang X-Q, Xu Y-Q. et al. Org Lett 2025; 27: 5152-5158
- 17m Zhang X-Q, He C-Y, Song S-F. et al. Org Chem Front. 2025;
- 18 De Luca L, Giacomelli G, Taddei M. J Org Chem 2001; 66: 2534-2537
- 19 Takahashi R, Seo T, Kubota K, Ito H. ACS Catal 2021; 11: 14803-14810
For other methods for the synthesis of polyfluorinated aryl ketones, see:
For selected recent examples of carbonylative reactions, see: