Subscribe to RSS
DOI: 10.1055/a-2661-3958
Cyclooctynes as Building Blocks for the Synthesis of Arene-Annulated Eight-Membered Ring Systems
Supported by: LOEWE Program of Excellence of the Federal State of Hesse LOEWE Focus Group PriOSS ’Principles of On Surfa
Funding Information The authors acknowledge the LOEWE Program of Excellence of the Federal State of Hesse (LOEWE Focus Group PriOSS ‘Principles of On-Surface Synthesis’) for financial support.

Abstract
Arene-annulated eight-membered carbocycles constitute a unique class of molecular architectures, combining the rigidity of aromatic ring systems with the distinctive conformational features of cyclooctene-derived frameworks. Among the various synthetic routes developed to prepare these structures, Diels–Alder reactions employing cyclooctyne derivatives as dienophiles stand out for their high degree of modularity as well as functional group tolerance. Herein, we provide an overview of these Diels–Alder-based strategies by comparing commonly employed strained alkyne dienophiles and classifying different types of diene systems. This systematic compilation of synthetic methods may help guide future developments in the synthesis of polycyclic structures containing eight-membered rings and foster their usage in functional materials and biological applications.
Keywords
Cycloaddition - Strained alkynes - Cyclooctyne - Diels–Alder reaction - Skeletal editing - Polycyclic aromatic hydrocarbonsPublication History
Received: 26 June 2025
Accepted after revision: 20 July 2025
Accepted Manuscript online:
20 July 2025
Article published online:
04 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM. J Am Chem Soc 2007; 129: 3842
- 1b Shen X, Viney C, Johnson ER, Wang C, Lu JQ. Nat Chem 2013; 5: 1035
- 1c Wang Z, Huang Y, Guo J. et al. Macromolecules 2018; 51: 1377
- 1d Kim H, Son JB, Jeong M. et al. J Am Chem Soc 2025; 147: 16429
- 2a Yuan C, Saito S, Camacho C, Irle S, Hisaki I, Yamaguchi S. J Am Chem Soc 2013; 135: 8842
- 2b Yuan C, Saito S, Camacho C, Kowalczyk T, Irle S, Yamaguchi S. Chem Eur J 2014; 20: 2193
- 2c Yamakado T, Takahashi S, Watanabe K, Matsumoto Y, Osuka A, Saito S. Angew Chem Int Ed 2018; 57: 5438
- 2d Xiong Y, Gong Q, Miao Q. Chem Asian J 2023; 18: e202300623
- 3 Kotani R, Sotome H, Okajima H. et al. Mater Chem C 2017; 5: 5248
- 4a Nakamura K, Li Q-Q, Krejčí O. et al. J Am Chem Soc 2020; 142: 11363
- 4b Villalobos F, Mendieta-Moreno JI, Lobo-Checa J. et al. J Am Chem Soc 2025; 147: 7245
- 5 Qu H, Zhao M, Xu W. Chem Eur J 2025; e202501399
- 6 González Miera G, Matsubara S, Kono H, Murakami K, Itami K. Chem Sci 1848; 2022: 13
- 7a Chupakhin EG, Krasavin MY. Chem Heterocycl Compd 2018; 54: 483
- 7b Harris T, Alabugin IV. Mendeleev Commun 2019; 29: 237
- 7c Fang Y, Hillman AS, Fox JM. Top Curr Chem 2024; 382: 15
- 8a Kloster-Jensen E, Wirz J. Angew Chem 1973; 85: 723
- 8b Kloster-Jensen E, Wirz J. Helv Chim Acta 1975; 58: 162
- 9 Wong HNC, Garratt PJ, Sondheimer F. J Am Chem Soc 1974; 96: 5604
- 10 Kii I, Shiraishi A, Hiramatsu T. et al. Org Biomol Chem 2010; 8: 4051
- 11 Detert H, Rose B, Mayer W, Meier H. Chem Ber 1994; 127: 1529
- 12a Werner C, Hopf H, Dix I, Bubenitschek P, Jones PG. Chem Eur J 2007; 13: 9462
- 12b Werner C, Hopf H, Grunenberg J, Jones PG. Eur J Org Chem 2010; 2010: 4027
- 13 Wong HN, Sondheimer F. Tetrahedron 1981; 37: 99
- 14 Xing Y, de Huang NZ. J Org Chem 1982; 47: 140
- 15 Wong HNC. Acc Chem Res 1989; 22: 145
- 16 Man YM, Mak TCW, Wong HNC. J Org Chem 1990; 55: 3214
- 17 Kobryn L, Henry WP, Fronczek FR, Sygula R, Sygula A. Tetrahedron Lett 2009; 50: 7124
- 18 Kumar RA, Pattanayak MR, Yen-Pon E. et al. Angew Chem Int Ed 2019; 58: 14544
- 19a Pun SH, Wang Y, Chu M. et al. J Am Chem Soc 2019; 141: 9680
- 19b Zhang Y, Zhu Y, Lan D. et al. J Am Chem Soc 2021; 143: 5231
- 20 Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem Eur J 2014; 20: 3705
- 21 Suzuki S, Segawa Y, Itami K, Yamaguchi J. Nat Chem 2015; 7: 227
- 22 Nakayama J, Yamaoka S, Nakanishi T, Hoshino M. J Am Chem Soc 1988; 110: 6598
- 23a Meguro T, Yoshida S, Hosoya T. Chem Lett 2017; 46: 1137
- 23b Wang W, Ji X, Du Z, Wang B. Chem Commun 2017; 53: 1370
- 24 Müller M, Iyer VS, Kübel C, Enkelmann V, Müllen K. Angew Chem Int Ed 1997; 36: 1607
- 25 Pun SH, Chan CK, Liu Z, Miao Q. Org Mater 2020; 2: 248
- 26 Chen H, Miao Q. ChemPlusChem 2019; 84: 627
- 27 Elliott EL, Orita A, Hasegawa D, Gantzel P, Otera J, Siegel JS. Org Biomol Chem 2005; 3: 581
- 28 Duda B, Lentz D. Org Biomol Chem 2015; 13: 5625
- 29a Wang D, Viennois E, Ji K. et al. Chem Commun 2014; 50: 15890
- 29b Ji X, Ji K, Chittavong V, Aghoghovbia RE, Zhu M, Wang B. J Org Chem 2017; 82: 1471
- 30 Huang G, Kouklovsky C, La Torre A d. Chem Eur J 2021; 27: 4760
- 31 Huang W, Gunawardhana N, Zhang Y, Escorihuela J, Laughlin ST. Chem Eur J 2024; 30: e202303465
- 32 Varga BR, Kállay M, Hegyi K, Béni S, Kele P. Chem Eur J 2012; 18: 822
- 33a Cui Q, Pan TW, Shieh M. et al. Org Lett 2022; 24: 7334
- 33b Huang W, Wen K, Laughlin ST, Escorihuela J. Org Biomol Chem 2024; 22: 8285
- 34a Png ZM, Zeng H, Ye Q, Xu J. Chem Asian J 2017; 12: 2142
- 34b Zhang J, Shukla V, Boger DL. J Org Chem 2019; 84: 9397
- 34c Zhang F-G, Chen Z, Tang X, Ma J-A. Chem Rev 2021; 121: 14555
- 35a Sun H, Xue Q, Zhang C, Wu H, Feng P. Org Chem Front 2022; 9: 481
- 35b Venrooij KR, Bondt L, de Bonger KM. Top Curr Chem 2024; 382: 24
- 35c Yu A, He X, Shen T. et al. Chem Soc Rev 2025; 54: 2984
- 36 Meguro T, Chen S, Kanemoto K, Yoshida S, Hosoya T. Chem Lett 2019; 48: 582
- 37a Kessler SN, Neuburger M, Wegner HA. Eur J Org Chem 2011; 2011: 3238
- 37b Kessler SN, Neuburger M, Wegner HA. J Am Chem Soc 2012; 134: 17885
- 37c Schweighauser L, Bodoky I, Kessler S, Häussinger D, Wegner H. Synthesis 2012; 44: 2195
- 37d Schweighauser L, Bodoky I, Kessler SN, Häussinger D, Donsbach C, Wegner HA. Org Lett 2016; 18: 1330
- 37e Ahles S, Götz S, Schweighauser L. et al. Org Lett 2018; 20: 7034
- 37f Ahles S, Ruhl J, Strauss MA, Wegner HA. Org Lett 2019; 21: 3927
- 37g Ruhl J, Ahles S, Strauss MA, Leonhardt CM, Wegner HA. Org Lett 2021; 23: 2089
- 37h Beeck S, Ahles S, Wegner HA. Chem Eur J 2022; 28: e202104085
- 37i Große M, Wegner HA. Synlett 2024; 35: 1019
- 37j Große M, Leonhardt CM, Campbell PAR, Wegner HA. Org Lett 2025; 27: 4893
- 38 Wegner H, Kessler S. Synlett 2012; 23: 699
- 39 Yang Y-F, Liang Y, Liu F, Houk KN. J Am Chem Soc 2016; 138: 1660
- 40 Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Nat Chem 2024; 16: 741
- 41 Pradhan S, Mohammadi F, Bouffard J. J Am Chem Soc 2023; 145: 12214
- 43 Tian X, Roch LM, Baldridge KK, Siegel JS. Eur J Org Chem 2017; 2017: 2801