RSS-Feed abonnieren
DOI: 10.1055/a-2644-2389
Deacetylative Protocol to Obtain Diastereoselectively α-Fluoro-β-amino-oxindoles via a Mannich-Type Reaction using Aliphatic N-tert-Butanesulfinyl Imines
Funding Information The Ministerio de Ciencia e Innovación (Spain) (Project PID2022-137973NB-100) and the Government of Aragón (Spain) (Group of Reference, E34_23R) are acknowledged for financial support. We thank the Ministerio de Ciencia, Innovación y Universidades (RED2018-102387-T, RED2022-134287-T, and PID2019-107268GB-100) funded by MCIN/AEI/10.13039/501100011033 and Conselleria de Educación, Cultura, Universidades y Empleo (IDIFEDER/2021/013, GVA-COVID19/2021/079 CIAPOT/2022/11, and APOTIP/2021/020), the University of Alicante (VIGROB-050; UADIF17-42 UAUSTI16-02, VIGROB-068 and UAUSTI21-05) and Medalchemy S. L. (Medalchemy 22T).

Dedication
Dedicated to Professor Paul Knochel on the occasion of his 70th birthday.
Abstract
The deacetylative reaction of 3-acetyl-3-fluoro-2-oxindoles with a mild base promotes the in situ generation of 3-fluoro-2-oxindole enolates which react with aliphatic N-tert-butanesulfinyl imines via the Mannich-type reaction generating α-fluoro-β-sulfinylamino oxindoles in a diastereoselective way. The orientation of the attack of the enolate to the imine was computationally investigated, and the analysis of the absolute configuration of the resulting products was performed according to vibrational circular dichroism.
Publikationsverlauf
Eingereicht: 07. April 2025
Angenommen nach Revision: 26. Juni 2025
Artikel online veröffentlicht:
19. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Wang J, Sánchez-Roselló M, Aceña JL. et al. Chem Rev 2014; 114: 2432-2506
- 1b Theodoridis G. Adv Fluor Sci 2006; 2: 121-175
- 2 Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. Eur J Med Chem 2023; 260: 115758
- 3 Ojima I. ed Fluorine in Medicinal Chemistry and Chemical Biology. Chichester: John Wiley & Sons; 2009
- 4 Zhou Y, Wang J, Gu Z. et al. Chem Rev 2016; 116: 422-518
- 5 Khetmalis YM, Shivani M, Murugesan S, Sekhar KVGC. Biomed Pharmacother 2021; 141: 111842
- 6 Hewawasam P, Gribkoff VK, Pendri Y. et al. Bioorg Med Chem Lett 2002; 12: 1023-1026
- 7a Zhang W, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y. Eur J Org Chem 2017; 1540-1546
- 7b Xie C, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y. RSC Adv 2017; 7: 5679-5683
- 7c Xie C, Zhang L, Sha W, Soloshonok VA, Han J, Pan Y. Org Lett 2016; 18: 3270-3273
- 7d Xie C, Zhang L, Mei H, Han J, Soloshonok WA, Pan Y. Chem Select 2016; 1: 4435-4439
- 8 Chen X, Li Y, Zhao J, Zheng B, Lu Q, Ren X. Adv Synth Catal 2017; 359: 3057-3062
- 9a Mendes JA, Costa PRR, Yus M, Foubelo F, Buarque CD. Beilstein J Org Chem 2021; 17: 1096-1140
- 9b Robak MT, Herbage MA, Ellman JA. Chem Rev 2010; 110: 3600-3740
- 9c Ellman JA, Owens TD, Tang TP. Acc Chem Res 2002; 35: 984-995
- 10a Lahosa A, Soler T, Arrieta A, Cossío FP, Foubelo F, Yus M. J Org Chem 2017; 82: 7481-7491
- 10b Lahosa A, Yus M, Foubelo F. J Org Chem 2019; 84: 7331-7341
- 10c Hernández-Ibáñez S, Sirvent A, Yus M, Foubelo F. Molecules 2023; 28: 2414
- 11 Ortega-Martínez A, Molina C, Moreno-Cabrerizo C, Sansano JM, Nájera C. Eur J Org Chem 2018; 2394-2405
- 12 Sempere I, Merino P, Molina C. et al. ARKIVOC 2022; Part III: 16-32
- 13 Chen X, Li Y, Zhao J, Zheng B, Lu Q, Ren X. Adv Synth Catal 2017; 359: 3057-3062
See for example: