Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/a-2642-9128
DOI: 10.1055/a-2642-9128
Letter
Visible-Light-Induced I2-Mediated Cyclization of ortho-Biarylchalcones of Naphthofuran Series toward Oxa[5]helicenes
Supported by: Russian Science Foundation RSF- 23-73-01123
Funding Information This work was supported by the Russian Science Foundation (RSF grant 23-73-01123).

Abstract
This work presents a novel, eco-friendly, transition metal-free method for synthesizing oxa[5]helicenes via visible-light-induced photocyclization of ortho-biarylchalcones of naphthofuran series. It was found that the obtained compounds are highly stable to both UV (365 nm) and visible light (LED420) irradiation in the presence of atmospheric oxygen or molecular iodine.
Keywords
Photochemistry - Heterocycles - Biarylchalcones - Naphthofuran - Photocyclization - Mallory reaction - HelicenesPublication History
Received: 15 May 2025
Accepted after revision: 25 June 2025
Accepted Manuscript online:
25 June 2025
Article published online:
07 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Shen Y, Chen C-F. Chem Rev 2012; 112: 1463
- 1b Hasan M, Borokov V. Symmetry 2018; 10: 1
- 1c Gingras M. Chem Soc Rev 2013; 42: 1051
- 1d Urbano A. Angew Chem, Int Ed 2003; 42: 2
- 1e Sakamaki D, Kumano D, Yashima E, Seki S. Angew Chem Int Ed 2015; 54: 5404
- 1f Yang Y, da Costa RC, Smilgies DM, Campbell AJ, Fuchter M. J Adv Mater 2013; 25: 2624
- 1g Katayama T, Nakatsuka S, Hirai H. et al. J Am Chem Soc 2016; 138: 5210
- 1h Zeng C, Xiao C, Feng X, Zhang L, Jiang W, Wang Z. Angew Chem Int Ed 2018; 57: 10933
- 2a Goto K, Yamaguchi R, Hiroto S, Ueno H, Kawai T, Shinokubo H. Angew Chem Int Ed 2012; 51: 10333
- 2b Hellou N, Srebro-Hooper M, Favereau L. et al. Angew Chem Int Ed 2017; 56: 8236
- 2c Nakamura K, Furumi S, Takeuchi M, Shibuya T, Tanaka K. J Am Chem Soc 2014; 136: 35
- 2d Laleu B, Mobian P, Herse C. et al. Angew Chem Int Ed 1879; 2005: 44
- 2e Chen F, Tanaka T, Hong YS, Mori T, Kim D, Osuka A. Angew Chem Int Ed 2017; 56: 14688
- 2f Shinohara K-i, Sannohe Y, Kaieda S. et al. J Am Chem Soc 2010; 132: 3778
- 2g Nuckolls C, Shao R, Jang W-G, Clark NA, Walba DM, Katz TJ. Chem Mater 2002; 14: 773
- 2h Nakai Y, Mori T, Inoue Y. J Phys Chem A 2012; 116: 7372
- 2i Balandina T, van der Meijden MW, Ivasenko O. et al. Chem Commun 2013; 49: 2207
- 2j Cruz CM, Marquez IR, Castro-Fernandez S, Cuerva JM, Macoas E, Campana AG. Angew Chem Int Ed 2019; 58: 8068
- 3a Shinohara K, Sannohe Y, Kaieda S. et al. J Am Chem Soc 2010; 132: 3778
- 3b Rajapakse A, Gates KS. J Org Chem 2012; 77: 3531
- 3c Babic A, Pascal S, Duwald R, Moreau D, Lacour J, Allemann E. Adv Funct Mater 2017; 27: 1701839
- 4a Zhang Y, Pun SH, Miao Q. Chem Rev 2022; 122: 14554
- 4b Liu J, Osella S, Ma J. et al. J Am Chem Soc 2016; 138: 8364
- 4c He J, Mathew S, Kinney ZJ, Warrell RM, Molina JS, Hartley CS. Chem Commun 2015; 51: 7245
- 4d Krzeszewski M, Sahara K, Poronik YM, Kubo T, Gryko DT. Org Lett 2018; 20: 1517
- 4e Fujikawa T, Segawa Y, Itami K. J Am Chem Soc 2015; 137: 7763
- 4f Fujikawa T, Mitoma N, Wakamiya A, Saeki A, Segawa Y, Itami K. Org Biomol Chem 2017; 15: 4697
- 4g Pradhan A, Dechambenoit P, Bock H, Durola F. Angew Chem, Int Ed 2011; 50: 12582
- 4h Yamano R, Shibata Y, Tanaka K. Chem Eur J 2018; 24: 6364
- 5a Hoffmann N. Chem Rev 2008; 108: 1052
- 5b De Keukeleire D, He SL. Chem Rev 1993; 93: 359
- 5c Mallory FB, Mallory CW. Org React 2004; 30: 1
- 5d Skubi KL, Blum TR, Yoon TP. Chem Rev 2016; 116: 10035
- 5e Rau H. Chem Rev 1983; 83: 535
- 6a Yano K, Osatani M, Tani K, Adachi T, Yamamoto K, Matsubara H. Bull Chem Soc Jpn 2000; 73: 185
- 6b Stammel C, Froehlich R, Wolff C, Wenck H, de Meijere A, Mattay J. Eur J Org Chem 1999; 1999: 1709
- 6c Terfort A, Goerls H, Brunner H. Synthesis 1997; 1997: 79
- 6d Liu L, Katz TJ. Tetrahedron Lett 1991; 32: 6831
- 6e Laarhoven WH, Prinsen WJC. Top Curr Chem 1984; 125: 63
- 7a Lvov AG, Khusniyarov MM, Shirinian VZJ. Photochem Photobiol C 2018; 36: 1
- 7b Zakharov AV, Timofeeva SM, Shirinian VZ. Synthesis 2024; 56: 2247
- 7c Zakharov AV, Timofeeva SM, Yadykov AV, Krayushkin MM, Shirinian VZ. Org Biomol Chem 2015; 2023: 21
- 7d Lvov AG, Yokoyama Y, Shirinian VZ. Chem Rec 2020; 20: 51
- 7e Yadykov AV, Scherbakov AM, Trofimova VV. et al. Org Lett 2019; 21: 9608
- 7f Shirinian VZ, Lonshakov IA, Zakharov AV, Lvov AG, Krayushkin MM. Synthesis 2019; 51: 414
- 7g Yadykov AV, Lvov AG, Krayushkin MM, Zakharov AV, Shirinian VZ. J Org Chem 2021; 86: 10023
- 7h Zakharov AV, Yadykov AV, Lvov AG, Mitina EA, Shirinian VZ. Org Biomol Chem 2020; 18: 3098
- 8 Zakharov AV, Evsikova EE, Grebennikova PD, Krylova MA, Fakhrutdinov AN, Shirinian VZ. Org Biomol Chem 2025; 23: 5182
- 9a Tsuji H, Nakamura E. Acc Chem Res 2017; 50: 396
- 9b Costa D, Sousa CM, Coelho PJ. Tetrahedron 2018; 74: 7372
- 9c Piloto AM, Costa SPG, Goncalves MST. Tetrahedron Lett 2005; 46: 4757
- 9d Tsuji H, Mitsui C, Ilies L, Sato Y, Nakamura E. J Am Chem Soc 2007; 129: 11902
- 9e Walker B, Tamayo AB, Dang XD. et al. Adv Funct Mater 2009; 19: 3063
- 9f Aiken S, Allsopp B, Booth K, Gabbutt CD, Heron BM, Rice CR. Tetrahedron 2014; 70: 9352
- 10a Abdelwahab AHF, Fekry SAH. Eur J Chem 2021; 12: 340
- 10b Boto A, Alvarez L. In Common Ring Heterocycles in Natural Product Synthesis. Majumdar KC, Chattopadhyay SK. edsVol 97. Weinheim, Germany: Wiley-VCH; 2011
- 10c La Clair JJ, Rheingold AL, Burkart MD. J Nat Prod 2011; 74: 2045
- 10d Ni G, Zhang QJ, Zheng ZF, Chen RY, Yu DQ. J Nat Prod 2009; 72: 966
- 10e Riviere C, Pawlus AD, Merillon JM. Nat Prod Rep 2012; 29: 1317
- 10f Luo G, Yang Y, Zhou M. et al. Fitoterapia 2014; 99: 21
- 10g Radadiya A, Shah A. Eur J Med Chem 2015; 97: 356
- 10h Seo KH, Lee DY, Jeong RH. et al. J Med Food 2015; 18: 403
- 11a Guével RL, Oger F, Lecorgne A. et al. Bioorg Med Chem Lett 2009; 17: 7021
- 11b Islam K, Pal K, Debnath U. et al. Bioorg Med Chem Lett 2020; 30: 127476
- 11c Carlsson B, Singh BN, Temciuc M. et al. J Med Chem 2002; 45: 623
- 11d Saitoh M, Kunitomo J, Kimura E. et al. J Med Chem 2009; 52: 6270
- 11e Kiyonaga D, Tagawa N, Yamaguchi Y. et al. Biol Pharm Bull 2012; 35: 1275
- 12a Mekeda IS, Balakhonov RY, Shirinian VZ. Org Biomol Chem 2024; 22: 7715
- 12b Balakhonov RY, Mekeda IS, Shirinian VZ. Adv Synth Catal 2023; 365: 3690
- 13 The structure of the dimer 3ahh-a was unambiguously established by 1H, 13C NMR spectroscopy, HRMS, and two-dimensional NMR experiments (Ref. 8)
- 14a Jørgensen KB. Molecules 2010; 15: 4334
- 14b Sudhakar A, Katz TJ. Tetrahedron Lett 1986; 27: 2231
- 14c Sudhakar A, Katz TJ, Yang B. J Am Chem Soc 1986; 108: 2790
- 14d Wigglesworth TJ, Sud D, Norsten TB, Lekhi VS, Branda NR. J Am Chem Soc 2005; 127: 7272
- 14e Liu L, Yang B, Katz TJ, Poindexter MK. J Org Chem 1991; 56: 3769