Subscribe to RSS
DOI: 10.1055/a-2640-2384
Dual Nickel/Photoredox-Catalyzed Stereoselective Allylation for the Synthesis of 1,3-Diols
Supported by: Foundation of China 22171036,22471029
Supported by: School of Chemistry and Chemical Engineering, Henan Normal University 2020YB03
Supported by: Natural Science Foundation of Henan Province 232300421126
Funding Information Foundation of China (22471029 and 22171036), the Natural Science Foundation of Henan Province (232300421126), and the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University (2020YB03).

Abstract
An efficient dual Ni/organophotoredox catalytic system has been developed for the stereoselective allylation of aldehydes with vinyl cyclic carbonates (VCCs). This method enables the construction of 1,3-diols bearing tertiary stereocenters under mild conditions (room temperature, visible light irradiation) with excellent yields (up to 89%) and diastereoselectivity (dr >20:1). Key to the success is the synergistic interplay between nickel catalysis and photoredox activation, which facilitates the generation of nucleophilic allyl-Ni intermediates and subsequent C–C bond formation via a Zimmerman–Traxler-type transition state. The protocol employs inexpensive and commercially available catalysts, exhibits broad substrate scope, and demonstrates applicability to late-stage functionalization of pharmaceuticals.
Keywords
Photocatalysis - Nickel catalysis - Allylation - Stereoselectivity - 1,3-Diols - Quaternary carbonPublication History
Received: 02 April 2025
Accepted after revision: 19 June 2025
Accepted Manuscript online:
20 June 2025
Article published online:
30 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Fang GY, Aggarwal VK. Angew Chem Int Ed 2007; 46: 359-362
- 1b Yang CX, Huang SS, Yang XP, Jia ZJ. Planta Med 2004; 70: 446
- 2a Yang CX, Huang SS, Yang XP, Jia ZJ. Planta Med 2004; 70: 446
- 2b Yus M, Gonzalez-Gomez JC, Foubelo F. Chem Rev 2011; 111: 7774
- 2c Yus M, Gonzalez-Gomez JC, Foubelo F. Chem Rev 2013; 113: 5595
- 2d Bonandi E, Tedesco G, Perdicchia D, Passarella D. Molecules 2020; 25: 1057
- 2e Li SS, Zhao LL, Pan M. et al. Org Lett 2023; 25: 8501
- 2f Lee D, Kim H. Synlett 2015; 26: 2583
- 3a Chen XX, He ZT. ChemCatChem 2023; 15: 22
- 3b Xiao G, Wu X, Zhou Z, Hou G. Org Chem Front 2024; 11: 2786
- 3c Sekiya K, Nakamura E. Tetrahedron Lett 1998; 29: 5155
- 4a Yamamoto Y, Asao N. Chem Rev 1993; 93: 2207
- 4b Denmark SE, Fu J. Chem Rev 2003; 103: 2763
- 4c Lombardo M, Trombini C. Chem Rev 2007; 107: 3843
- 4d Marek I, Sklute G. Chem Commun 2007; 1683
- 4e Wheatley E, Zanghi JM, Meek SJ. Org Lett 2020; 22: 9269
- 4f Linclau B, Cini E, Oakes CS, Josse S, Light M, Ironmonger V. Angew Chem Int Ed 2012; 51: 1232
- 4g Yus M, Gonzalez-Gomez JC, Foubelo F. Chem Rev 2013; 113: 5595
- 4h Yus M, Gonzalez-Gomez JC, Foubelo F. Chem Rev 2011; 111: 7774
- 4i Huo H-X, Duvall JR, Huang M-Y, Hong R. Org Chem Front 2014; 1: 303
- 5a Bao M, Nakamura H, Yamamoto Y. J Am Chem Soc 2001; 123: 759
- 5b Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem Rev. 1846; 2011: 111
- 5c Tao Y, Wang B, Zhao J, Song Y, Qu L, Qu J. J Org Chem 2012; 77: 2942
- 6a Schwarz JL, Schafers F, Tlahuext-Aca A, Luckemeier L, Glorius F. J Am Chem Soc 2018; 140: 12705
- 6b Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem Sci 2019; 10: 3459
- 6c Gualandi A, Calogero F, Mazzarini M. et al. ACS Catal 2020; 10: 3857
- 6d Lin S, Chen Y, Yan H. et al. Org Lett 2021; 23: 8077
- 6e Shi C, Li F, Chen Y. et al. ACS Catal 2021; 11: 2992
- 7a Cao Z, Li J, Zhang G. Nat Commun 2021; 12: 6404
- 7b Guo R, Xiao H, Li S. et al. Angew Chem Int Ed Engl 2022; 61: e202208232
- 7c Li GQ, Li ZQ, Jiang M. et al. Angew Chem Int Ed Engl 2024; 63: e202405560
- 7d Wang PZ, Zhang Z, Jiang M, Chen JR, Xiao WJ. Angew Chem Int Ed Engl 2024; 63: e202411469
- 8 Li Y-L, Li W-D, Gu Z-Y, Chen J, Xia J-B. ACS Catal 2019; 10: 1528
- 9 Calogero F, Potenti S, Bassan E. et al. Angew Chem Int Ed Engl 2022; 61: e202114981
- 10 Xie H, Breit B. ACS Catal 2022; 12: 3249
- 11 Zhang Z, Han Z, Li J, Hu H-S, Li J, Xi C. ACS Catal 2024; 14: 12392
- 12a Cristofol A, Limburg B, Kleij AW. Angew Chem Int Ed Engl 2021; 60: 15266
- 12b Hu L, Cai A, Wu Z, Kleij AW, Huang G. Angew Chem Int Ed 2019; 58: 14694
- 12c Gomez JE, Cristofol A, Kleij AW. Angew Chem Int Ed 2019; 58: 3903
- 12d Xue S, Cristòfol À, Limburg B, Zeng Q, Kleij AW. ACS Catal 2022; 12: 3651
- 13a Evans DA, Connell BT. J Am Chem Soc 2003; 125: 10899
- 13b Nicolaou KC, Nold AL, Milburn RR, Schindler CS, Cole KP, Yamaguchi J. J Am Chem Soc 2007; 129: 1760
- 13c Feng J, Noack F, Krische MJ. J Am Chem Soc 2016; 138: 12364
- 14a Ng S-S, Jamison TF. Tetrahedron 2005; 61: 11405
- 14b Kimura M, Ezoe A, Mori M, Iwata K, Tamaru Y. J Am Chem Soc 2006; 128: 8559
- 14c Sato Y, Takimoto M, Hayashi K, Katsuhara T, Takagi K, Mori M. J Am Chem Soc 1994; 116 (21) 9771
- 14d Kimura M, Ezoe A, Shibata K, Tamaru Y. J Am Chem Soc 1998; 120 (16) 4033
- 14e Takimoto M, Hiraga Y, Sato Y, Mori M. Tetrahedron Lett 1998; 39 (25) 4543
- 14f Gu J, Wang X, Xue W, Gong H. Org Chem Front. 2015; 2: 1411
- 14g Davies TQ, Murphy JJ, Dousset M, Furstner A. J Am Chem Soc. 2021; 143: 13489
- 15a Gualandi A, Rodeghiero G, Faraone A. et al. Chem Commun 2019; 55: 6838
- 15b Li YQ, Chen G, Shi SL. Org Lett 2021; 23: 2571
- 15c Calogero F, Potenti S, Bassan E. et al. Angew Chem Int Ed 2022; 61: e202114981
- 15d Gualandi A, Calogero F, Corbisiero D, Pinosa E, Cozzi PG, Asian J. Org Chem 2024; 13: e202300574
- 15e Kim S, Kim J, Tambe SD, Cho EJ. Org Chem Front 2024; 11: 816
- 16 Yan H, Zhang D, Liu Y. et al. Org Chem Front 2024; 11: 684
- 17 Speckmeier E, Fischer TG, Zeitler K. J Am Chem Soc 2018; 140: 15353
- 18 Wang PZ, Chen JR, Xiao WJ. Org Biomol Chem 2019; 17: 6936
- 19 3a General Procedure. In a clean, oven-dried screw-cap reaction tube containing a magnetic stir bar, aldehyde (0.1 mmol), VCCs (0.2 mmol, 2 eq.), DIPEA (1 eq.), HE (3 mmol, 1.5 eq.), 4CzIPN (2.0 mol%) were weighed. NiCl2 (10 mol%,), ligand (12 mol%,) with THF (1 mL, 0.1M) were stirring together in N2 atmosphere overnight. A common laboratory syringe was used to introduce mixed liquor (1 mL) into the reaction mixture. Then, the reaction mixture was stirred at room temperature using a 10 W 455 nm LED for 4 h. After detaching the reaction, the solvent was removed in a rotatory evaporator. Finally, it was concentrated in reduced pressure and was purified by column chromatography through silica gel (300−400 mesh size) using PET-ether/ethyl acetate as an eluent an eluent silica gel (300−400 mesh size) using PET-ether/ethyl acetate as an eluent
- 20 3a, Rf = 0.3 (EA/PE = 1:5), the eluent: EA/PE = 1:10, 85% (136.1 mg), white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.86–7.77 (m, 1H), 7.77–7.70 (m, 1H), 7.63 (d, J = 8.4Hz, 1H), 7.56 (s, 1H), 7.48 (qd, J = 6.8, 3.4 Hz, 2H), 7.34 –7.15 (m, 5H), 7.09 (dd, J = 8.4, 2.0 Hz, 1H), 6.30 (dd, J = 18.0, 11.2 Hz, 1H), 5.45 (d, J = 11.2 Hz, 1H), 5.39 (s, 1H), 5.18 (d, J = 18.0 Hz, 1H), 4.03 (d, J = 11.2 Hz, 1H), 3.79 (d, J = 10.8 Hz, 1H), 3.39 (s, 1H), 2.38 (s, 1H). 13C NMR (101 MHz, Chloroform-d) δ 140.51, 139.18, 137.78, 132.77, 132.56, 128.34, 128.15, 128.01, 127.43, 126.90, 126.76, 126.64, 125.93, 125.79, 125.77, 117.51, 77.93, 65.75, 54.72. HRMS-ESI (m/z) [M+Cl]− Chemical Formula: C21H20ClO2 Exact Mass: 339.1152; found: 339.1160