Subscribe to RSS
DOI: 10.1055/a-2626-6825
Halide-Substituted Grubbs–Hoveyda Catalysts for Aqueous Ring-Closing Metathesis
Supported by: German Federal Ministry of Education and Research (BMBF)
Funding Information We acknowledge the Bioökonomie REVIER_INNO PlastiQuant (FKZ:031B0918E) and the German Federal Ministry of Education and Research (BMBF) for financial support.

Dedication
This paper is dedicated to Professor Paul Knochel on the occasion of his 70th birthday.
Abstract
The effect of halide substitution in ionic-substituted second-generation Grubbs–Hoveyda catalysts (GHII catalysts, AquaMet®) on the ring-closing metathesis activity toward N,N-diallyltosylamide in aqueous media was studied by varying the reaction conditions of biological relevance (pH, buffer, salt additives). The activity, as determined by GC–MS analysis, followed the order: bromide > chloride > iodide. The robustness of these complexes, as judged by time-resolved UV–vis absorptions, followed the reverse order: iodide > chloride > bromide. Diiodide-substituted GHII catalysts performed better than the dichloride and dibromide in the ring-closing metathesis of (N-alkenyl)(N-allyl)tosylamides in aqueous buffer solutions. Catalyst decomposition by hydrolysis appears to be suppressed for the diiodo GHII catalyst in aqueous buffer solutions.
Keywords
Alkenes - Carbene complexes - Cyclization - Heterocycles - Homogeneous catalysis - MetathesisPublication History
Received: 06 May 2025
Accepted after revision: 03 June 2025
Accepted Manuscript online:
03 June 2025
Article published online:
23 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Burtscher D, Grela K. Angew Chem Int Ed 2009; 48 (03) 442-454
- 2 Tomasek J, Schatz J. Green Chem 2013; 15 (9) 2317-2338
- 3 Sabatino V, Ward TR. Beilstein J Org Chem 2019; 15: 445-468
- 4 Matsuo T. Catalysts 2021; 11 (3) 359
- 5 Fu GC, Nguyen ST, Grubbs RH. J Am Chem Soc 1993; 115: 9856-9857
- 6 Boisvert E-JY, Max HC, Fogg DE. ACS Catal 2023; 13 (5) 2885-2891
- 7 Wu S, Zhou Y, Gerngross D, Jeschek M, Ward TR. Nat Commun 2019; 10 (1) 5060
- 8 Tiso T, Sauer DF, Beckerle K, Blesken CC, Okuda J, Blank LM. Catalysts 2020; 10 (8) 874
- 9 Sabatino V, Rebelein JG, Ward TR. J Am Chem Soc 2019; 141 (43) 17048-17052
- 10 Sauer DF, Qu Y, Mertens MAS. et al. Catal Sci Technol 2019; 9 (4) 942-946
- 11 Mertens MAS, Sauer DF, Markel U, Schiffels J, Okuda J, Schwaneberg U. Catal Sci Technol 2019; 9 (20) 5572-5576
- 12 Lin YA, Chalker JM, Davis BG. ChemBioChem 2009; 10 (6) 959-969
- 13 Lin YA, Chalker JM, Floyd N, Bernardes GJL, Davis BG. J Am Chem Soc 2008; 130: 9642-9643
- 14 Bhushan B, Lin YA, Bak M. et al. J Am Chem Soc 2018; 140 (44) 14599-14603
- 15 Lu X, Fan L, Phelps CB, Davie CP, Donahue CP. Bioconjugate Chem 2017; 28 (6) 1625-1629
- 16 Toussaint SNW, Calkins RT, Lee S, Michel BW. J Am Chem Soc 2018; 140 (41) 13151-13155
- 17 Vong K, Eda S, Kadota Y. et al. Nat Commun 2019; 10 (1) 5746
- 18 Schunck NS, Mecking S. Angew Chem Int Ed 2022; 61 (44) e202211285
- 19 Jeschek M, Reuter R, Heinisch T. et al. Nature 2016; 537 (7622) 661-665
- 20 Eda S, Nasibullin I, Vong K. et al. Nat Catal 2019; 2 (9) 780-792
- 21 Nasibullin I, Smirnov I, Ahmadi P, Vong K, Kurbangalieva A, Tanaka K. Nat Commun 2022; 13 (1) 39
- 22 Nasibullin I, Yoshioka H, Mukaimine A. et al. Chem Sci 2023; 14 (40) 11033-11039
- 23 Dunbar MA, Balof SL, Roberts AN, Valente EJ, Schanz H-J. Organometallics 2010; 30 (2) 199-203
- 24 Church DC, Takiguchi L, Pokorski JK. Polym Chem 2020; 11 (27) 4492-4499
- 25 Goudreault AY, Walden DM, Nascimento DL. et al. ACS Catal 2020; 10 (6) 3838-3843
- 26 Matsuo T, Yoshida T, Fujii A, Kawahara K, Hirota S. Organometallics 2013; 32 (19) 5313-5319
- 27 James CC, Laan PCM, de Bruin B, Reek JNH. Chem Cat Chem 2023; 15: e202201272
- 28 Sanford MS, Love JA, Grubbs RH. J Am Chem Soc 2001; 123: 6543-6554
- 29 Wappel J, Urbina-Blanco CA, Abbas M. et al. Beilstein J Org Chem 2010; 6: 1091-1098
- 30 Gawin R, Grela K. Eur J Inorg Chem 2012; 2012 (9) 1477-1484
- 31 Hartung J, Dornan PK, Grubbs RH. J Am Chem Soc 2014; 136 (37) 13029-13037
- 32 Seiders TJ, Ward DW, Grubbs RH. Org Lett 2001; 3: 3225-3228
- 33 Funk TW, Berlin JM, Grubbs RH. J Am Chem Soc 2006; 128: 1840-1846
- 34 Paradiso V, Bertolasi V, Grisi F. Organometallics 2014; 33 (21) 5932-5935
- 35 Paradiso V, Bertolasi V, Costabile C, Grisi F. Dalton Trans 2016; 45 (2) 561-571
- 36 Nechmad NB, Kobernik V, Tarannam N. et al. Angew Chem Int Ed 2021; 60 (12) 6372-6376
- 37 Phatake RS, Nechmad NB, Reany O, Lemcoff NG. Adv Synth Catal 2022; 364 (8) 1465-1472
- 38 Nechmad NB, Iudanov K, Tarannam N, Kobernik V, Kozuch S, Lemcoff NG. ChemCatChem 2023; 15 (4) e202201690
- 39 Blanco CO, Nascimento DL, Fogg DE. Organometallics 2021; 40 (12) 1811-1816
- 40 Tracz A, Matczak M, Urbaniak K, Skowerski K. Beilstein J Org Chem 2015; 11: 1823-1832
- 41 Engl PS, Tsygankov A, De Jesus Silva J. et al. Helv Chim Acta 2020; 103 (4) 1
- 42 Blanco CO, Sims J, Nascimento DL. et al. ACS Catal 2021; 11 (2) 893-899
- 43 Blanco CO, Fogg DE. ACS Catal 2023; 13 (2) 1097-1102
- 44 Lo C, Ringenberg MR, Gnandt D, Wilson Y, Ward TR. Chem Commun 2011; 47 (44) 12065-12067
- 45 Mayer C, Gillingham DG, Ward TR, Hilvert D. Chem Commun 2011; 47 (44) 12068-12070
- 46 Matsuo T, Imai C, Yoshida T, Saito T, Hayashi T, Hirota S. Chem Commun 2012; 48 (11) 1662-1664
- 47 Basauri-Molina M, Verhoeven DGA, van Schaik AJ, Kleijn H, Klein Gebbink RJM. Chemistry 2015; 21 (44) 15676-15685
- 48 Zhao J, Kajetanowicz A, Ward TR. Org Biomol Chem 2015; 13 (20) 5652-5655
- 49 Fischer S, Ward TR, Liang AD. ACS Catal 2021; 11 (10) 6343-6347
- 50 Philippart F, Arlt M, Gotzen S. et al. Chemistry 2013; 19 (41) 13865-13871
- 51 Sauer DF, Bocola M, Broglia C. et al. Chem Asian J 2015; 10 (1) 177-182
- 52 Ingram AA, Oike K. ChemCatChem 2024; e202301759
- 53 Grimm AR, Sauer DF, Davari MD. et al. ACS Catal 2018; 8 (4) 3358-3364
- 54 Ingram AA, Wang D, Schwaneberg U, Okuda J. J Inorg Biochem 2024; 258: 112616
- 55 Skowerski K, Szczepaniak G, Wierzbicka C, Gułajski Ł, Bieniek M, Grela K. Catal Sci Technol 2012; 2 (12) 2424-2427
- 56 Jeffrey GA, Saenger W. Hydrogen Bonding in Biological Structures. Springer; 1991
- 57 Connon SJ, Rivard M, Zaja M, Blechert S. Adv Synth Catal 2003; 345 (5) 572-575
- 58 Voigtritter K, Ghorai S, Lipshutz BH. J Org Chem 2011; 76 (11) 4697-4702
- 59 Hong SH, Wenzel AG, Salguero TT, Day MW, Grubbs RH. J Am Chem Soc 2007; 129: 7961-7968
- 60 Gottlieb HE, Kotlyar V, Nudelman A. J Org Chem 1997; 62 (21) 7512-7515
- 61 Yan F, Liang H, Song J. et al. Org Lett 2017; 19 (1) 86-89
- 62 Terada Y, Arisawa M, Nishida A. Angew Chem Int Ed 2004; 43 (31) 4063-4067
- 63 Che C, Li W, Lin S. et al. Chem Commun 2009; 40: 5990-5992