Subscribe to RSS

DOI: 10.1055/a-2600-0327
Rh(II)-Catalyzed Synthesis of 1,3-Diols via 5-endo-trig Cyclization of Silyl Radicals
This work was supported by the Lise-Meitner program of the Max-Planck-Gesellschaft as well as an Alexander von Humboldt-Stiftung fellowship to Z.Q. and a China Scholarship Council (CSC) PhD scholarship to H. Deng.

Abstract
1,3-Diols, which are a frequent motif in biologically active molecules, can be prepared from readily available allylic alcohols via formal anti-Markovnikov hydration. The commonly employed hydroboration–oxidation sequence for the synthesis of terminal alcohols is challenging for allylic alcohols, and O-protection of the alcohol can be necessary. To increase atom economy, we explored the use of silane protecting groups that can be engaged in intramolecular hydrosilylation. Oxidative cleavage of the cyclized product yields the desired 1,3-diol and obviates the need for super-stoichiometric borane reagents. Based on a detailed study of O-silylation conditions, a protocol is presented that furnishes quantitative yields of a wide range of O-silylated alcohols which contain Si–H bonds for further functionalization. We show that a MOF-based Rh(II) porphyrin can furnish efficient intramolecular hydrosilylation, while the corresponding homogeneous analogue proved unreactive. Radical trapping studies suggest that silyl radicals constitute key intermediates in Rh(II)-catalyzed intramolecular hydrosilylation. Preferential 5-endo-trig versus 6-exo-trig cyclization and 5-exo-trig versus 6-endo-trig cyclization of the silyl radical intermediates led to chemoselective 1,3-diol formation for substrates containing multiple olefins.
Key words
rhodium(II) metalloradical - 1,3-diol synthesis - silyl radical - radical cyclization - MOF catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2600-0327.
- Supporting Information
Publication History
Received: 14 March 2025
Accepted after revision: 29 April 2025
Accepted Manuscript online:
05 May 2025
Article published online:
02 June 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1
Dong G,
Teo P,
Wickens ZK,
Grubbs RH.
Science 2011; 333: 1609
MissingFormLabel
- 2
Hu X,
Zhang G,
Bu F,
Lei A.
ACS Catal. 2017; 7: 1432
MissingFormLabel
- 3
van der Worp BA,
Ritter T.
J. Am. Chem. Soc. 2025; 147: 4736
MissingFormLabel
- 4
Brown HC,
Zweifel G.
J. Am. Chem. Soc. 1961; 83: 2544
MissingFormLabel
- 5
Burgess K,
Ohlmeyer MJ.
Chem. Rev. 2002; 91: 1179
MissingFormLabel
- 6
Obligacion JV,
Chirik PJ.
Nat. Rev. Chem. 2018; 2: 15
MissingFormLabel
- 7
Still WC,
Barrish JC.
J. Am. Chem. Soc. 1983; 105: 2487
MissingFormLabel
- 8
Mulzer J,
Sieg A,
Brücher C,
Müller D,
Martin HJ.
Synlett 2005; 685
MissingFormLabel
- 9
Ji E,
Meng H,
Zheng Y,
Ramadoss V,
Wang Y.
Eur. J. Org. Chem. 2019; 7367
MissingFormLabel
- 10
Coutts LD,
Cywin CL,
Kallmerten J.
Synlett 1993; 696
MissingFormLabel
- 11
Hua Y,
Nguyen HH,
Scaggs WR,
Jeon J.
Org. Lett. 2013; 15: 3412
MissingFormLabel
- 12
Zacuto MJ,
O’Malley SJ,
Leighton JL.
J. Am. Chem. Soc. 2002; 124: 7890
MissingFormLabel
- 13
Zacuto MJ,
O’Malley SJ,
Leighton JL.
Tetrahedron 2003; 59: 8889
MissingFormLabel
- 14
Hua Y,
Nguyen HH,
Trog G,
Berlin AS,
Jeon J.
Eur. J. Org. Chem. 2014; 5890
MissingFormLabel
- 15
Qiu Z,
Deng H,
Neumann CN.
Angew. Chem. Int. Ed. 2024; 63: e202401375
MissingFormLabel
- 16
Wayland BB,
Sherry AE,
Bunn AG.
J. Am. Chem. Soc. 1993; 115: 7675
MissingFormLabel
- 17
Lee W.-CC,
Zhang XP.
Angew. Chem. Int. Ed. 2024; 63: e202320243
MissingFormLabel
- 18
Sanford MS,
Groves JT.
Angew. Chem. Int. Ed. 2004; 43: 588
MissingFormLabel
- 19
Yu M,
Fu X.
J. Am. Chem. Soc. 2011; 133: 15926
MissingFormLabel
- 20
Yu M,
Jing H,
Liu X,
Fu X.
Organometallics 2015; 34: 5754
MissingFormLabel
- 21
Liu X,
Wang Z,
Zhao X,
Fu X.
Inorg. Chem. Front. 2016; 3: 861
MissingFormLabel
- 22
Zhang J,
Zhang W,
Xu M,
Zhang Y,
Fu X,
Fang H.
J. Am. Chem. Soc. 2018; 140: 6656
MissingFormLabel
- 23
Natinsky BS,
Lu S,
Copeland ED,
Quintana JC,
Liu C.
ACS Cent. Sci. 2019; 5: 1584
MissingFormLabel
- 24
To CT,
Choi KS,
Chan KS.
J. Am. Chem. Soc. 2012; 134: 11388
MissingFormLabel
- 25
Qiu Z,
Bruzzese PC,
Wang Z,
Deng H,
Leutzsch M,
Farès C,
Chabbra S,
Neese F,
Schnegg A,
Neumann C.
J. Am. Chem. Soc. 2025; 147: 12024
MissingFormLabel
- 26
Bengsch M,
Neumann CN.
ChemCatChem 2025; 17: e202402102
MissingFormLabel
- 27
Toutov AA,
Betz KN,
Haibach MC,
Romine AM,
Grubbs RH.
Org. Lett. 2016; 18: 5776
MissingFormLabel
- 28
Ohshita J,
Taketsugu R,
Nakahara Y,
Kunai A.
J. Organomet. Chem. 2004; 689: 3258
MissingFormLabel
- 29
Dong J,
Yuan X.-A,
Yan Z,
Mu L,
Ma J,
Zhu C,
Xie J.
Nat. Chem. 2021; 13: 182
MissingFormLabel
- 30
Zhang L,
Hang Z,
Liu Z.-Q.
Angew. Chem. Int. Ed. 2016; 55: 236
MissingFormLabel
- 31
Cheng C,
Brookhart M.
Angew. Chem. Int. Ed. 2012; 51: 9422
MissingFormLabel
- 32
Huang C,
Ghavtadze N,
Chattopadhyay B,
Gevorgyan V.
J. Am. Chem. Soc. 2011; 133: 17630
MissingFormLabel
- 33
Wang L,
Menche D.
Angew. Chem. Int. Ed. 2012; 51: 9425
MissingFormLabel
- 34
Muriel B,
Orcel U,
Waser J.
Org. Lett. 2017; 19: 3548
MissingFormLabel
- 35
Orcel U,
Waser J.
Angew. Chem. Int. Ed. 2015; 54: 5250
MissingFormLabel
- 36
Marin-Luna M,
Polloth B,
Zott F,
Zipse H.
Chem. Sci. 2018; 9: 6509
MissingFormLabel
- 37
Patschinski P,
Zhang C,
Zipse H.
J. Org. Chem. 2014; 79: 8348
MissingFormLabel
- 38
Stawinski J,
Bartoszewicz A,
Kalek M,
Nilsson J,
Hiresova R.
Synlett 2008; 37
MissingFormLabel
- 39
Fan X,
Xiao P,
Jiao Z,
Yang T,
Dai X,
Xu W,
Tan JD,
Cui G,
Su H,
Fang W,
Wu J.
Angew. Chem. Int. Ed. 2019; 58: 12580
MissingFormLabel
- 40
Shchepin R,
Xu C,
Dussault P.
Org. Lett. 2010; 12: 4772
MissingFormLabel
- 41
Feng D,
Gu Z.-Y,
Li J.-R,
Jiang H.-L,
Wei Z,
Zhou H.-C.
Angew. Chem. Int. Ed. 2012; 51: 10307
MissingFormLabel
- 42
Feng D,
Chung W.-C,
Wei Z,
Gu Z.-Y,
Jiang H.-L,
Chen Y.-P,
Darensbourg DJ,
Zhou H.-C.
J. Am. Chem. Soc. 2013; 135: 17105
MissingFormLabel
- 43
Amrein S,
Timmermann A,
Studer A.
Org. Lett. 2001; 3: 2357
MissingFormLabel
- 44
Hou H,
Xu Y,
Yang H,
Chen X,
Yan C,
Shi Y,
Zhu S.
Org. Lett. 2020; 22: 1748
MissingFormLabel
- 45
Griller D,
Ingold KU.
Acc. Chem. Res. 1980; 13: 317
MissingFormLabel
- 46
Wu C.-W,
Chen H.-L,
Ho J.-J.
J. Mol. Struct. 2007; 815: 11
MissingFormLabel
- 47
Fu Y,
Li R.-Q,
Liu L,
Guo Q.-X.
Res. Chem. Intermed. 2004; 30: 279
MissingFormLabel
- 48
Zhou R,
Li J,
Cheo HW,
Chua R,
Zhan G,
Hou Z,
Wu J.
Chem. Sci. 2019; 10: 7340
MissingFormLabel
- 49
Zhou R,
Goh YY,
Liu H,
Tao H,
Li L,
Wu J.
Angew. Chem. Int. Ed. 2017; 56: 16621
MissingFormLabel
- 50
Gilmore K,
Mohamed RK,
Alabugin IV.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016; 6: 487
MissingFormLabel
- 51
Baldwin JE.
J. Chem. Soc., Chem. Commun. 1976; 734
MissingFormLabel
- 52
Cai Y,
Roberts BP.
J. Chem. Soc., Perkin Trans. 1 1998; 467
MissingFormLabel
- 53
Ishibashi H,
Sato T,
Ikeda M.
Synthesis 2002; 695
MissingFormLabel
- 54
Zhou Y,
Xu S,
Zhang X,
Zhou L,
Zheng H,
Zhu G.
Chem. Commun. 2024; 60: 10098
MissingFormLabel
- 55
Sanzone JR,
Hu CT,
Woerpel KA.
J. Am. Chem. Soc. 2017; 139: 8404
MissingFormLabel