Subscribe to RSS
DOI: 10.1055/a-2567-1329
Transition-Metal-Catalyzed (Ni, Pd) Remote Difunctionalization of Alkenes via Chain-Walking Strategies
H.G. acknowledges the Robert A. Welch Foundation and Texas Tech University for financial support. K.Y. acknowledges Changzhou University for financial support.

Abstract
Alkenes are not only crucial feedstocks in the chemical industry but are also extensively present in natural products, pharmaceuticals, and organic functional materials. The direct difunctionalization of alkenes has emerged as a powerful and valuable strategy for the construction of highly functionalized organic skeletons. This short review highlights recent advancements in transition-metal-catalyzed remote 1,n-difunctionalization (n > 2) reactions of alkenes with the focus on innovative strategies involving chain-walking processes to construct complex, highly functionalized organic frameworks.
1 Introduction
2 Nickel Catalysis
3 Palladium Catalysis
4 Conclusion
Key words
nickel catalysis - palladium catalysis - remote difunctionalization - alkenyl derivatives - chain-walkingPublication History
Received: 28 February 2025
Accepted after revision: 26 March 2025
Accepted Manuscript online:
26 March 2025
Article published online:
05 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Torres Galvis HM, de Jong KP. ACS Catal. 2013; 3: 2130
- 2a Dong B, Shen J, Xie L.-G. Org. Chem. Front. 2023; 10: 1322
- 2b Li B, Ali AI. M, Ge H. Chem 2020; 6: 2591
- 2c Wilson MR, Taylor RE. Angew. Chem. Int. Ed. 2013; 52: 4078
- 2d Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2e Mari M, Bartoccini F, Piersanti G. J. Org. Chem. 2013; 78: 7727
- 2f Konkol LC, Guo F, Sarjeant AA, Thomson RJ. Angew. Chem. Int. Ed. 2011; 50: 9931
- 2g Sperry JB, Price Wiglesworth KE, Edmonds I, Fiore P, Boyles DC, Damon DB, Dorow RL, Piatnitski Che-kler EL, Langille J, Coe JW. Org. Process Res. Dev. 2014; 18: 1752
- 3a Sun J, Wang L, Zheng G, Zhang Q. Org. Chem. Front. 2023; 10: 4488
- 3b Qin J.-H, Nan N, Li J.-H. Synthesis 2023; 55: 2843
- 3c Jiang H, Studer A. Chem. Soc. Rev. 2020; 49: 1790
- 4a Li Y, Yin G. Acc. Chem. Res. 2023; 56: 3246
- 4b Yang S, Chen Y, Ding Z. Org. Biomol. Chem. 2020; 18: 6983
- 5a Luo Y.-C, Xu C, Zhang X. Chin. J. Chem. 2020; 38: 1371
- 5b Li Z, Fang G, Gu Q, Liu X. Chem. Soc. Rev. 2020; 49: 32
- 6a Li Y, Wu D, Cheng H.-G, Yin G. Angew. Chem. Int. Ed. 2020; 59: 7990
- 6b Dhungana RK, Sapkota RR, Niroula D, Giri R. Chem. Sci. 2020; 11: 9757
- 6c Wang D.-K, Li L, Xu Q, Zhang J, Zheng H, Wei W.-T. Org. Chem. Front. 2021; 8: 7037
- 6d Ghosh S, Patel S, Chatterjee I. Chem. Commun. 2021; 57: 11110
- 6e Romano C, Martin R. Nat. Rev. Chem. 2024; 8: 833
- 6f Rodrigalvarez J, Haut F.-L, Martin R. JACS Au 2023; 3: 3270
- 7a Yang K, Li Z, Hu Q, Elsaid M, Liu C, Chen J, Ge H. Catalysts 2022; 12: 1163
- 7b Khake SM, Chatani N. Chem 2020; 6: 1056
- 7c Liu Y, Bandini M. Chin. J. Chem. 2019; 37: 431
- 8a Zhao L, Zhu Y, Liu M, Xie L, Liang J, Shi H, Meng X, Chen Z, Han J, Wang C. Angew. Chem. Int. Ed. 2022; 61: e202204716
- 8b Yang K, Song M, Ma Z, Li Y, Li Z, Sun X. Org. Chem. Front. 2019; 6: 3996
- 8c Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2014; 136: 1789
- 9 Basnet P, Dhungana RK, Thapa S, Shrestha B, KC S, Sears JM, Giri R. J. Am. Chem. Soc. 2018; 140: 7782
- 10 Wang W, Ding C, Li Y, Li Z, Li Y, Peng L, Yin G. Angew. Chem. Int. Ed. 2019; 58: 4612
- 11 Li Y, Wei H, Yin G. Tetrahedron Lett. 2022; 100: 153889
- 12 Sun C, Ding C, Yu Y, Li Y, Yin G. Fundam. Res. 2023; in press
- 13 Ding C, Ren Y, Sun C, Long J, Yin G. J. Am. Chem. Soc. 2021; 143: 20027
- 14 Kong W, Bao Y, Lu L, Han Z, Zhong Y, Zhang R, Li Y, Yin G. Angew. Chem. Int. Ed. 2023; 62: e202308041
- 15 Ding C, Ren Y, Yu Y, Yin G. Nat. Commun. 2023; 14: 7670
- 16 Diesel J, Cramer N. Chimia 2020; 74: 278
- 17 He Y, Ma J, Song H, Zhang Y, Liang Y, Wang Y, Zhu S. Nat Commun. 2022; 13: 2471
- 18 Liu Z, D’Amico F, Martin R. J. Am. Chem. Soc. 2024; 146: 28624
- 19 Biffis A, Centomo P, Zotto AD, Zecca M. Chem. Rev. 2018; 118: 2249
- 20a Yuan D, Xu Z, Zhou Y, Herington F, Liu C, Yang K, Ge H. Catalysts 2025; 15: 72
- 20b Yang K, Song M, Liu H, Ge H. Chem. Sci. 2020; 11: 12616
- 20c Niu B, Yang K, Lawrence B, Ge H. ChemSusChem 2019; 12: 2955
- 21a Larock RC, Lu YD, Bain AC. J. Org. Chem. 1991; 56: 4589
- 21b Larock RC, Wang Y, Lu YD, Russell CE. J. Org. Chem. 1994; 59: 8107
- 22 Pang H, Wu D, Cong H, Yin G. ACS Catal. 2019; 9: 8555
- 23 Pang H, Wu D, Yin G. Chin. J. Org. Chem. 2021; 41: 849
- 24 Kanno S, Kakiuchi F, Kochi T. J. Am. Chem. Soc. 2021; 143: 19275
- 25 Xi Y, Huang W, Wang C, Ding H, Xia T, Wu L, Fang K, Qu J, Chen Y. J. Am. Chem. Soc. 2022; 144: 8389
- 26 Yang X, Chen P, Liu G. Angew. Chem. Int. Ed. 2024; 63: e202408305
- 27 Liu C, Wang L, Ge H. J. Am. Chem. Soc. 2024; 146: 30733