Subscribe to RSS
DOI: 10.1055/a-2550-1635
Organocatalytic Asymmetric X–H Insertion Reactions of α-Carbonyl Sulfonium Ylides, Sulfoxonium Ylides, and Sulfonium Salts
We thank the National Natural Science Foundation of China (22271242, 22471232), the Hong Kong Research Grants Council (C6012-21G, 16304322, 16309722, 16309023) and Innovation and Technology Commission (ITC-CNERC14SC01) and Changzhou University for financial support.

Abstract
Since their initial discovery by Ingold and Jessop in 1930, sulfur ylides have been recognized as a highly versatile class of compounds in organic synthesis. Their reactivity, which closely resembles that of diazo compounds, has enabled them to serve as valuable surrogates for safe and stable carbene precursors, offering unique advantages in large-scale syntheses. However, compared to diazo compounds, the catalytic asymmetric reactions involving sulfur ylides, whether as substrates or intermediates, remain relatively underexplored. In this account, we mainly summarize our recent advancements in this area, focusing particularly on their applications in organocatalytic asymmetric X–H (X = N, N3, Cl, and C) insertion reactions. These reactions typically involve enantio-determining and rate-determining C–X bond formation in combination with dynamic kinetic resolution, thus leading to both high chemical efficiency and enantiocontrol.
1 Introduction
2 S–H Insertion Reactions of Sulfoxonium Ylides
3 N–H Insertion Reactions of Sulfonium Ylides
4 N–H Insertion Reactions of Sulfoxonium Ylides
5 One-Pot Sequential Ylide Formation and N–H insertion Reactions
6 N3–H Insertion Reactions of Sulfoxonium Ylides
7 Chlorination of Sulfonium Salts
8 C–H Insertion Reactions of Sulfoxonium Ylides
9 Conclusion and Outlook
Key words
organocatalysis - enantioselectivity - α-carbonyl - sulfonium ylide - sulfoxonium ylide - sulfonium salt - N–H insertionPublication History
Received: 21 January 2025
Accepted after revision: 03 March 2025
Accepted Manuscript online:
03 March 2025
Article published online:
15 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ingold CK, Jessop JA. J. Chem. Soc. 1930; 713
- 2 Johnson AW, LaCount RB. J. Am. Chem. Soc. 1961; 83: 417
- 3a Franzen V, Schmidt HJ, Mertz C. Chem. Ber. 1961; 94: 2942
- 3b Franzen V, Driesen H.-E. Chem. Ber. 1963; 96: 1881
- 4a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 867
- 4b Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 3782
- 4c Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1964; 86: 1640
- 4d Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
- 5a Burtoloso AC. B, Dias RM. P, Leonarczyk IA. Eur. J. Org. Chem. 2013; 2013: 5005
- 5b Cattelan L, Fiorani G, Selva M, Perosa A. Aldrichimica Acta 2018; 51: 63
- 5c Neuhaus JD, Oost R, Merad J, Maulide N. Top. Curr. Chem. 2018; 376: 15
- 5d Tan J. Chin. Sci. Bull. 2018; 63: 3612
- 5e Vaitla J, Bayer A. Synthesis 2019; 51: 612
- 5f Fan R, Tan C, Liu Y, Wei Y, Zhao X, Liu X, Tan J, Yoshida H. Chin. Chem. Lett. 2021; 32: 299
- 6a Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
- 6b Bisag GD, Ruggieri S, Fochi M, Bernardi L. Org. Biomol. Chem. 2020; 18: 8793
- 7a Lu L.-Q, Li T.-R, Wang Q, Xiao W.-J. Chem. Soc. Rev. 2017; 46: 4135
- 7b Caiuby CA. D, Furniel LG, Burtoloso AC. B. Chem. Sci. 2022; 13: 1192
- 8 Dias RM. P, Burtoloso AC. B. Org. Lett. 2016; 18: 3034
- 9 Momo PB, Leveille AN, Farrar EH. E, Grayson MN, Mattson AE, Burtoloso AC. B. Angew. Chem. Int. Ed. 2020; 59: 15554
- 10 Zhang Z, Luo Y, Du H, Xu J, Li P. Chem. Sci. 2019; 10: 5156
- 11 Guo W, Luo Y, Sung HH.-Y, Williams ID, Li P, Sun J. J. Am. Chem. Soc. 2020; 142: 14384
- 12 Baldwin JE, Adlington RM, Godfrey CR. A, Gollins DW, Vaughan JG. J. Chem. Soc., Chem. Commun. 1993; 1434
- 13a Mangion IK, Nwamba IK, Shevlin M, Huffman MA. Org. Lett. 2009; 11: 3566
- 13b He H, Yan K, Li J, Lai R, Luo Y, Guan M, Wu Y. Synthesis 2020; 52: 3065
- 13c Li J, He H, Huang M, Chen Y, Luo Y, Yan K, Wang Q, Wu Y. Org. Lett. 2019; 21: 9005
- 13d Xu S, Zhang Q, Li Y, Luo C, Lai R, Guo L, Hai L, Lv G, Wu Y. J. Org. Chem. 2023; 88: 15335
- 13e Yan S, Hao Y, Xu S, Hai L, Lv G, Wu Y. J. Org. Chem. 2024; 89: 13401
- 13f Furniel LG, Echemendía R, Burtoloso AC. B. Chem. Sci. 2021; 12: 7453
- 14 Guo W, Wang M, Han Z, Huang H, Sun J. Chem. Sci. 2021; 12: 11191
- 15a Mennen SM, Gipson JD, Kim YR, Miller SJ. J. Am. Chem. Soc. 2005; 127: 1654
- 15b Gediya SK, Clarkson GJ, Wills M. J. Org. Chem. 2020; 85: 11309
- 15c Wang J, Lin X, Shao P.-L, Song J, Wen J, Zhang X. ACS Catal. 2021; 11: 12729
- 16 Zhou Y, Yue X, Jiang F, Sun J, Guo W. Chem. Commun. 2023; 59: 1193
- 17a Janot C, Palamini P, Dobson BC, Muir J, Aïssa C. Org. Lett. 2019; 21: 296
- 17b Janot C, Chagnoleau JB, Halcovitch NR, Muir J, Aïssa C. J. Org. Chem. 2020; 85: 1126
- 18a Ciszewski LW, Rybicka-Jasinska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
- 18b Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
- 18c Durka J, Turkowska J, Gryko D. ACS Sustainable Chem. Eng. 2021; 9: 8895
- 18d Zhang Z, Gevorgyan V. Chem. Rev. 2024; 124: 7214
- 18e Terlizzi LD, Nicchio L, Protti S, Fagnoni M. Chem. Soc. Rev. 2024; 53: 4926
- 19a Lu J, Li L, He X.-K, Xu G.-Y, Xuan J. Chin. J. Chem. 2021; 39: 1646
- 19b Munaretto LS, dos Santos CY, Gallo RD. C, Okada CY, Deflon VM, Jurberg ID. Org. Lett. 2021; 23: 9292
- 20 Guo W, Zhou Y, Xie H, Yue X, Jiang F, Huang H, Han Z, Sun J. Chem. Sci. 2023; 14: 843
- 21a Zhang H, Wang Z, Wang Z, Chu Y, Wang S, Hui X.-P. ACS Catal. 2022; 12: 5510
- 21b Pan J.-B, Zhang X.-G, Shi Y.-F, Han A.-C, Chen Y.-J, Ouyang J, Li M.-L, Zhou Q.-L. Angew. Chem. Int. Ed. 2023; 62: e202300691
- 21c Li S, Zhang C, Pan G, Yang L, Su Z, Feng X, Liu X. ACS Catal. 2023; 13: 4656
- 21d Zhou Y, Zhang Y, Yu C, Yue X, Jiang F, Guo W. Tetrahedron Lett. 2023; 122: 154496
- 22 Guo W, Jiang F, Li S, Sun J. Chem. Sci. 2022; 13: 11648
- 23 Li Z, Wang B, Zhang C, Lo WY, Yang L, Sun J. J. Am. Chem. Soc. 2024; 146: 2779
- 24a Brotzel F, Chu YC, Mayr H. J. Org. Chem. 2007; 72: 3679
- 24b Phan TB, Mayr H. J. Phys. Org. Chem. 2006; 19: 706
- 24c Minegishi S, Loos R, Kubayashi S, Mayr H. J. Am. Chem. Soc. 2005; 127: 2641
- 25a Lakhdar S, Westermaier M, Terrier F, Goumont R, Boubaker T, Ofial AR, Mayr H. J. Org. Chem. 2006; 71: 9088
- 25b Kempf B, Hampel N, Ofial AR, Mayr H. Chem. Eur. J. 2003; 9: 2209
- 26a Müller P, Fernandez D, Nury P, Rossier JC. Helv. Chim. Acta 1999; 82: 935
- 26b Leveille AN, Echemendía R, Mattson AE, Burtoloso AC. B. Org. Lett. 2021; 23: 9446
- 27 Yue X, Li S.-J, Ou T, Xiong Z, Jiang F, Zhou Y, Song L, Zhao Y, Guo W. Org. Chem. Front. 2024; 11: 4084
- 28a Wu F, Zhang Y, Zhu R, Huang Y. Nat. Chem. 2024; 16: 132
- 28b Zhang J.-W, Zhang Y, Huang Y. Angew. Chem. Int. Ed. 2024; 63: e202413102
- 29a Mountford SJ, Anderson BM, Xu B, Tay ES. V, Szabo M, Hoang ML, Diao J, Aurelio L, Campden RI, Lindstrom E, Sloan EK, Yates RM, Bunnett NW, Thompson PE, Edgington-Mitchell LE. ACS Chem. Biol. 2020; 15: 718
- 29b Wan C, Hou Z, Yang D, Zhou Z, Xu H, Wang Y, Dai C, Liang M, Meng J, Chen J, Yin F, Wang R, Li Z. Chem. Sci. 2023; 14: 604
For selected reviews on this topic:
For selected reviews on this topic:
For selected reviews on this topic:
For selected reviews on this topic: