Synlett
DOI: 10.1055/a-2526-0771
account

Recent Advances in the Synthesis of Functionalized Pyrazolo[1,5-a]pyrimidines via C–H Functionalization

Suvam Paul
,
Tathagata Choudhuri
,
Sourav Das
,
Papiya Sikdar
,
A.K.B. acknowledges the Department of Science and Technology and Biotechnology (DSTBT), Government of West Bengal, India (GO no. 324(Sanc.)/STBT-11012(25)/13/2024-ST SEC) for financial support. A.K.B. also acknowledges the financial support from the SERB, DST (File no. EEQ/2018/000498) and the University of Kalyani (PRG). S. P. (CSIR-SRF), T. C. (URS-SRF) and S. D. (UGC-SRF) acknowledge the Council of Scientific and Industrial Research (CSIR) New Delhi, University of Kalyani, and University Grants Commission (UGC), New Delhi, respectively, for their fellowships.


This article is dedicated to Prof. B. C. Ranu on the grand occasion of his 75th birthday

Abstract

Recent developments in the synthesis of functionalized pyrazolo[1,5-a]pyrimidines through C–H functionalization have been summarized in this account, covering the synthesis of 3-halo, 3-nitro, 3-formyl, 3-acetyl, 3-sulfenyl, 3-selenyl, and 3-thiocyanato pyrazolo[1,5-a]pyrimidines and bis(pyrazolo[1,5-a]pyrimidin-3-yl)methanes. The main focus highlights the utilization of sustainable conditions in designing the protocols. Mechanistic aspects of these protocols have also been discussed in detail.

1 Introduction

2 Discussion

2.1 Synthesis of 3-Halo Pyrazolo[1,5-a]pyrimidines

2.2 Synthesis of 3-Nitro Pyrazolo[1,5-a]pyrimidines

2.3 Synthesis of 3-Formyl Pyrazolo[1,5-a]pyrimidine

2.4 Synthesis of 3-Acetyl Pyrazolo[1,5-a]pyrimidines

2.5 Synthesis of 3-Sulfenyl Pyrazolo[1,5-a]pyrimidines

2.6 Synthesis of 3-Selenyl Pyrazolo[1,5-a]pyrimidines

2.7 Synthesis of 3-Thiocyanated Pyrazolo[1,5-a]pyrimidines

2.8 Synthesis of Bis(pyrazolo[1,5-a]pyrimidinyl)methanes

3 Conclusions and Outcome



Publication History

Received: 09 January 2025

Accepted: 27 January 2025

Accepted Manuscript online:
27 January 2025

Article published online:
24 April 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Zisapel N. Expert Opin. Invest. Drugs 2015; 24: 401
    • 2a Arnold SL, Zhengming C, Phil S. US2008045547A1, 2008
    • 2b Koilpillai JP, Kale SA, Kelkar LM, Zope SS, Khan MA. US2012028045A1, 2012
    • 3a Mackman RL, Sangi M, Sperandio D, Parrish JP, Eisenberg E, Perron M, Hui H, Zhang L, Siegel D, Yang H, Saunders O, Boojamra C, Lee G, Samuel D, Babaoglu K, Carey A, Gilbert BE, Piedra PA, Strickley R, Iwata Q, Hayes J, Stray K, Kinkade A, Theodore D, Jordan R, Desai M, Cihlar T. J. Med. Chem. 2015; 58: 1630
    • 3b Nishio S, Abe M, Ito H. Diabetes, Metab. Syndr. Obes.: Targets Ther. 2015; 18: 163
  • 4 Gupta A, Das R, Chamoli A, Choithramani A, Kumar H, Patel S, Khude D, Bothra G, Wangdale K, Chowdhury MG, Rathod R, Mandoli A, Shard A. Organometallics 2022; 41: 2365
  • 5 Ledieu MS, Helyer NL. Ann. Appl. Biol. 1983; 102: 275
  • 7 Tigreros A, Zapata-Rivera J, Portilla J. ACS Sustainable Chem. Eng. 2021; 9: 12058
  • 8 Tigreros A, Macías M, Portilla J. Dyes Pigm. 2022; 202: 110299
  • 9 Tigreros A, Macías M, Portilla J. ChemPhotoChem 2022; 6: e202200133
  • 10 Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications . Wiley-VCH; Weinheim: 2003
    • 15a Kumar H, Das R, Choithramani A, Gupta A, Khude D, Bothra G, Shard A. ChemistrySelect 2021; 6: 5807
    • 15b Arias-Gómez A, Godoy A, Portilla J. Molecules 2021; 26: 2708
    • 15c Salem MA, Helal MH, Gouda MA, Abd EL-Gawad HH, Shehab MA. M, El-Khalafawy A. Synth. Commun. 2019; 49: 1750
    • 15d Cherukupalli S, Karpoormath R, Chandrasekaran B, Hampannavar GA, Thapliyal N, Palakollu VN. Eur. J. Med. Chem. 2017; 126: 298
  • 17 Castillo J.-C, Rosero H.-A, Portilla J. RSC Adv. 2017; 7: 28483
  • 18 Sikdar P, Choudhuri T, Paul S, Das S, Bagdi AK. ACS Omega 2023; 8: 23851
  • 19 Chillal AS, Bhawale RT, Kshirsagar UA. RSC Adv. 2024; 14: 13095
  • 20 Paul S, Das S, Choudhuri T, Sikdar P, Bagdi AK. Chem. Asian J. 2025; 20: e202401101
  • 22 Aranzazu S.-L, Tigreros A, Arias-Gómez A, Zapata-Rivera J, Portilla J. J. Org. Chem. 2022; 87: 9839
  • 23 Paul S, Das S, Choudhuri T, Sikdar P, Bagdi AK. J. Org. Chem. 2023; 88: 4187
  • 24 Chillal AS, Bhawale RT, Sharma S, Kshirsagar UA. J. Org. Chem. 2024; 89: 14496
  • 25 Choudhuri T, Paul S, Das S, Pathak DD, Bagdi AK. J. Org. Chem. 2023; 88: 8992
  • 26 Sikdar P, Choudhuri T, Paul S, Das S, Kumar A, Bagdi AK. Synthesis 2023; 55: 3693
  • 27 Chillal AS, Bhawale RT, Kshirsagar UA. ChemistrySelect 2024; 9: e202304815
  • 28 Choudhuri T, Paul S, Sikdar P, Das S, Sawant SD, Bagdi AK. New J. Chem. 2024; 48: 9480
  • 29 Kokorekin VA, Yaubasarova RR, Neverov SV, Petrosyan VA. Eur. J. Org. Chem. 2019; 2019: 4233
  • 30 Pattanayak P, Satyanarayana AN. V, Chatterjee T. J. Org. Chem. 2024; 89: 13215
  • 31 Zhang X, Chen J, Chen R, Wang L, Ma Y. Adv. Synth. Catal. 2024; 366: 3591
  • 32 Pattanayak P, Satyanarayana AN. V, Saha S, Keerthana HS, Naresh A, Girase YK, Chatterjee T. Synlett 2024; 35: 2465