Synthesis
DOI: 10.1055/a-2383-0958
psp

Practical Synthesis of N-Anilinylphenothiazines Using a Cyclic Hypervalent Iodine Coupling Reagent

Kana Yanase
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu Shiga, 525-8577, Japan
,
Koji Morimoto
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu Shiga, 525-8577, Japan
b   Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
,
a   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu Shiga, 525-8577, Japan
b   Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
,
Yasuyuki Kita
b   Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
› Author Affiliations
This work was partially supported by JSPS KAKENHI Grant Number 23K06060 to K. M. and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project to T. D.


Abstract

An improved protocol for the synthesis of N-anilinylphenothiazines based on the coupling reaction of anilines with phenothiazines using cyclic iodine(III) reagent is presented. In the improved method, the product can be isolated and purified without using column chromatography, and the cyclic hypervalent iodine reagent can be quantitatively recovered by aliquot manipulation. The workup procedure presented here is simpler compared to previously reported ones, facilitating large-scale synthesis. The para-selective phenothiazination of nitrogen-containing heterocycles such as hydroquinoline, which is important in pharmacology, was also successfully performed.

Supporting Information



Publication History

Received: 02 July 2024

Accepted after revision: 08 August 2024

Accepted Manuscript online:
08 August 2024

Article published online:
19 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mitchell S. Curr. Drug Targets 2006; 7: 1181
  • 2 Ohlow MJ, Moosmann B. Drug Discov. Today 2011; 16: 119
  • 3 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 4 Jiang K, Han S, Ma M, Zhang L, Zhao Y, Chen M. J. Am. Chem. Soc. 2020; 142: 7108
  • 5 Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
  • 6 Louillat ML, Patureau FW. Chem. Soc. Rev. 2014; 43: 901
  • 7 Patureau FW. ChemCatChem 2019; 11: 5227
  • 8 Kita Y, Dohi T. Chem. Rec. 2015; 15: 886
  • 9 Dohi T, Kita Y. Chem. Commun. 2009; 16: 2073
  • 10 Kita Y, Tohma H, Inagaki M, Hatanaka K, Yakura T. Tetrahedron Lett. 1991; 32, 4321
  • 11 Kita Y, Tohma H, Hatanaka K, Takada T, Fujita S, Mitoh S, Sakurai H, Oka S. J. Am. Chem. Soc. 1994; 116: 3684
  • 12 Morimoto K, Yanase K, Toda K, Takeuchi H, Dohi T, Kita Y. Org. Lett. 2022; 24: 6088
  • 13 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
  • 14 Erythropel HC, Zimmerman JB, De Winter TM, Petitjean L, Melnikov F, Lam CH, Lounsbury AW, Mellor KE, Janković NZ, Tu Q, Pincus LN, Falinski MM, Shi W, Coish P, Plata DL, Anastas PT. Green Chem. 2018; 20: 1929
  • 15 Vaškevičius M, Kapočiūtė-Dzikienė J, Šlepikas L. Electronics 2022; 11: 1360
  • 16 Iinuma M, Moriyama K, Togo H. Eur. J. Org. Chem. 2014; 772
  • 17 Manivannan E, Prasanna S. Bioorganic Med. Chem. Lett. 2005; 15: 4496
  • 18 Bradner WT. Cancer Treat. Rev. 2001; 27: 35
  • 19 Nagata N, Miyakawa M, Amano S, Furuya K, Yamamoto N, Nejishima H, Inoguchi K. Bioorganic Med. Chem. Lett. 2011; 21: 6310
  • 20 Vemuri PY, Wang Y, Patureau FW. Org. Lett. 2019; 21: 9856
  • 21 Wu YC, Jiang SS, Song RJ, Li JH. Chem. Commun. 2019; 55: 4371