Synthesis
DOI: 10.1055/a-2257-7304
short review

Unveiling Novel Synthetic Pathways through Brook Rearrangement

Mohamed Agbaria
,
Nwar Egbaria
,
We gratefully acknowledge the Neubauer Family Foundation, the Council of Higher Education of Israel (MAOF fellowship), and the Hebrew University of Jerusalem for generous financial support.


Dedicated to Professor Amos B Smith, III

Abstract

The Brook rearrangement is a valuable synthetic tool that facilitates the controlled construction of complex molecules. Conventionally, it generates carbanion intermediates utilized in subsequent functionalization reactions. In this review, we will explore recent advancements in the Brook rearrangement that extend beyond the traditional functionalization reactions. Specifically, we will highlight its involvement in unusual bond cleavage, annulation reactions, and dearomatization efforts. The novelty of this rearrangement is underscored by showcasing its most recent applications.

1 Introduction

2 Novel Synthetic Pathways Involving the Brook Rearrangement

2.1 C–C and C–X Bond Formation

2.2 C–C and C–X Bond Cleavage

2.3 Stereodefined Substituted Silyl Enol and Allenol Ethers

2.4 Annulation Reactions

2.5 Dearomatization

3 Synthetic Applications

4 Conclusion



Publication History

Received: 16 January 2024

Accepted after revision: 30 January 2024

Accepted Manuscript online:
30 January 2024

Article published online:
19 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gilman H, Wu TC. J. Am. Chem. Soc. 1953; 75: 2935
    • 1b Gilman H, Wu TC. J. Am. Chem. Soc. 1954; 76: 2502
    • 1c Gilman H, Lichtenwalter GD. J. Am. Chem. Soc. 1958; 80: 2680
  • 2 Brook AG. J. Am. Chem. Soc. 1958; 80: 1886
  • 3 Brook AG. Acc. Chem. Res. 1974; 7: 77
  • 4 Moser WH. Tetrahedron 2001; 57: 2065 ; and references therein
  • 7 Gao L, Yang W, Wu Y, Song Z. Org. React. 2020; 102: 1
    • 8a Jiang X.-L, Bailey WF. Organometallics 1995; 14: 5704
    • 8b Kawashima T, Naganuma K, Okazaki R. Organometallics 1998; 17: 367
    • 8c Naganuma K, Kawashima T, Okazaki R. Chem. Lett. 1999; 28: 1139
    • 9a Brook AG, Limburg WW. J. Am. Chem. Soc. 1963; 85: 832
    • 9b Brook AG, Pascoe JD. J. Am. Chem. Soc. 1971; 93: 6224
    • 9c Biernbaum MS, Mosher HS. J. Am. Chem. Soc. 1971; 93: 6221
    • 9d Wright A, West R. J. Am. Chem. Soc. 1974; 96: 3227
    • 10a Hudrlik PF, Hudrlik AM, Kulkarni AK. J. Am. Chem. Soc. 1982; 104: 6809
    • 10b Hoffmann R, Brückner R. Chem. Ber. 1992; 125: 2731
    • 10c Simov BJ, Wuggenig F, Mereiter K, Andres H, France J, Schnelli P, Hammerschmidt F. J. Am. Chem. Soc. 2005; 127: 13934
    • 10d Kapeller DC, Brecker L, Hammerschmidt F. Chem. Eur. J. 2007; 13: 9582

    • For additional studies, see:
    • 10e Wilson SR, Hague MS, Misra RN. J. Org. Chem. 1982; 47: 747
    • 10f Boche G, Opel A, Marsch M, Harms K, Haller K, Lohrenz JC. W, Thümmler C, Koch W. Chem. Ber. 1992; 125: 2265
  • 11 Collados JF, Ortiz P, Pérez JM, Xia Y, Koenis MA. L, Buma WJ, Nicu VP, Harutyunyan SR. Eur. J. Org. Chem. 2018; 3900
  • 12 Smith AB. III, Xian M, Kim W.-S, Kim D.-Sh. J. Am. Chem. Soc. 2006; 128: 12368
  • 13 Brook AG, Duff JM. J. Am. Chem. Soc. 1974; 96: 4692
  • 14 Takeda K, Sumi K, Hagisawa S. J. Organomet. Chem. 2000; 611: 449
  • 15 Speier JL. J. Am. Chem. Soc. 1952; 74: 1003
  • 16 West R, Lowe R, Stewart HF, Wright A. J. Am. Chem. Soc. 1971; 93: 282
  • 17 Zhang Y, Chen J.-J, Huang H.-M. Angew. Chem. Int. Ed. 2022; 61: e202205671

    • For selected studies on 1,3-C(sp2)–O silyl migration, see:
    • 18a Wilson SR, Georgiadis GM. J. Org. Chem. 1983; 48: 4143
    • 18b Sato F, Tanaka Y, Sato M. J. Chem. Soc., Chem. Commun. 1983; 165
    • 18c Urabe H, Sato F. J. Am. Chem. Soc. 1999; 121: 1245
    • 18d Radinov R, Schnurman ES. Tetrahedron Lett. 1999; 40: 243

      For selected studies on 1,4-C(sp2)–O silyl migration of aryl organosilicon compounds, see:
    • 19a Spinazzé PG, Keay BA. Tetrahedron Lett. 1989; 30: 1765
    • 19b Bures E, Spinazzé PG, Beese G, Hunt IR, Rogers C, Keay BA. J. Org. Chem. 1997; 62: 8741
    • 19c Devarie-Baez NO, Shuhler BJ, Wang H, Xian M. Org. Lett. 2007; 9: 4655
    • 19d Devarie-Baez NO, Kim W.-S, Smith AB. III, Xian M. Org. Lett. 2009; 11: 1861

      For selected studies on 1,4-C(sp2)–O silyl migration of vinyl organosilicon compounds, see:
    • 20a Kim KD, Magriotis PA. Tetrahedron Lett. 1990; 31: 6137
    • 20b Lautens M, Delanghe PH. M, Goh JB, Zhang CH. J. Org. Chem. 1995; 60: 4213
    • 20c Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T. Org. Lett. 2001; 3: 3811
    • 20d Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T. J. Org. Chem. 2002; 67: 8450
    • 20e Taguchi H, Miyashita H, Tsubouchi A, Takeda T. Chem. Commun. 2002; 2218
    • 20f Taguchi H, Tsubouchi A, Takeda T. Tetrahedron Lett. 2003; 44: 5205
  • 21 Tsubouchi A, Itoh M, Onishi K, Takeda T. Synthesis 2004; 1504
  • 22 Kwon Y.-J, Jeon Y.-K, Sim H.-B, Oh I.-Y, Shin I, Kim W.-S. Org. Lett. 2017; 19: 6224
    • 23a Moser WH, Endsley KE, Colyer JT. Org. Lett. 2000; 2: 717
    • 23b Moser WH, Zhang J, Lecher CS, Frazier TL, Pink M. Org. Lett. 2002; 4: 1981
  • 24 Taguchi H, Takami K, Tsubouchi A, Takeda T. Tetrahedron Lett. 2004; 45: 429
  • 25 Wang K, Li L, Hu T, Gao L, Song Z. J. Org. Chem. 2019; 84: 12583
    • 26a Smith AB. III, Kim W.-S, Wuest WM. Angew. Chem. Int. Ed. 2008; 47: 7082
    • 26b Smith AB. III, Kim W.-S, Tong R. Org. Lett. 2010; 12: 588
    • 26c Sanchez L, Smith AB. III. Org. Lett. 2012; 14: 6314
  • 27 Liu Q, Chen Y, Zhang X, Houk KN, Liang Y, Smith AB. III. J. Am. Chem. Soc. 2017; 139: 8710

    • For additional examples on sp3-type Brook rearrangement/ functionalization reaction, see:
    • 28a Lettan RB, Galliford CV, Woodward CC, Scheidt KA. J. Am. Chem. Soc. 2009; 131: 8805
    • 28b Schmitt DC, Johnson JS. Org. Lett. 2010; 12: 944
    • 28c Mita T, Higuchi Y, Sato Y. Org. Lett. 2014; 16: 14
    • 29a Nicewicz DA, Yates CM, Johnson JS. Angew. Chem. Int. Ed. 2004; 43: 2652
    • 29b Nicewicz DA, Yates CM, Johnson JS. J. Org. Chem. 2004; 69: 6548
  • 30 Nicewicz DA, Johnson JS. J. Am. Chem. Soc. 2005; 127: 6170
    • 31a Slade MC, Johnson JS. Beilstein J. Org. Chem. 2013; 9: 166
    • 31b Boyce GR, Johnson JS. Angew. Chem. Int. Ed. 2010; 49: 8930
    • 31c Greszler SN, Malinowski JT, Johnson JS. J. Am. Chem. Soc. 2010; 132: 17393
    • 31d Schmitt DC, Malow EJ, Johnson JS. J. Org. Chem. 2012; 77: 3246
  • 32 Lettan RB, Reynolds TE, Galliford CV, Scheidt KA. J. Am. Chem. Soc. 2006; 128: 15566
    • 33a Smirnov P, Mathew J, Nijs A, Katan E, Karni M, Bolm C, Apeloig Y, Marek I. Angew. Chem. Int. Ed. 2013; 52: 13717
    • 33b Smirnov P, Katan E, Mathew J, Kostenko A, Karni M, Nijs A, Bolm C, Apeloig Y, Marek I. J. Org. Chem. 2014; 79: 12122
    • 34a Leibeling M, Shurrush KA, Werner V, Perrin L, Marek I. Angew. Chem. Int. Ed. 2016; 55: 6057
    • 34b Collados JF, Ortiz P, Harutyunyan SR. Eur. J. Org. Chem. 2016; 3065
  • 35 Van Staden LF, Gravestock D, Ager DJ. Chem. Soc. Rev. 2002; 31: 195
    • 36a Shinokubo H, Miura K, Oshima K, Utimoto K. Tetrahedron 1996; 52: 503
    • 36b Shinokubo H, Miura K, Oshima K, Utimoto K. Tetrahedron Lett. 1993; 34: 1951

    • For other carbanion-stabilizing substituents, see:
    • 36c Jung A, Koch O, Ries M, Schaumann E. Synlett 2000; 92
  • 37 Tietze LF, Geissler H, Gewert JA, Jakobi U. Synlett 1994; 511
    • 38a Smith AB. III, Boldi AM. J. Am. Chem. Soc. 1997; 119: 6925
    • 38b Smith AB. III, Pitram SM, Boldi AM, Gaunt MJ, Sfouggatakis C, Moser WH. J. Am. Chem. Soc. 2003; 125: 14435

      For selected studies, see:
    • 39a Smith AB. III, Xian M. J. Am. Chem. Soc. 2006; 128: 66
    • 39b Smith AB. III, Tong R. Org. Lett. 2010; 12: 1260
    • 39c Chen MZ, Gutierrez O, Smith AB. III. Angew. Chem. Int. Ed. 2014; 53: 1279
    • 39d Farrell M, Melillo B, Smith AB. III. Angew. Chem. Int. Ed. 2016; 55: 232
    • 39e O’Brien KT, Smith AB. III. Org. Lett. 2019; 21: 7655
    • 39f O’Brien KT, Nadraws JW, Smith AB. III. Org. Lett. 2021; 23: 1521
  • 40 Zhang F.-G, Eppe G, Marek I. Angew. Chem. Int. Ed. 2016; 55: 714
  • 41 Tugny C, Zhang F.-G, Marek I. Chem. Eur. J. 2019; 25: 205
  • 42 Zhang F.-G, Marek I. J. Am. Chem. Soc. 2017; 139: 8364
  • 43 Petruncio G, Shellnutt Z, Elahi-Mohassel S, Alishetty S, Paige M. Nat. Prod. Rep. 2021; 38: 2187
  • 44 Tyler JL, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2022; 61: e202214049
    • 45a Wang C, Gan Z, Lu J, Wu X, Song Z. Tetrahedron Lett. 2011; 52: 2462
    • 45b Song Z, Kui L, Sun X, Li L. Org. Lett. 2011; 13: 1440
  • 46 For selected review, see: Matsuo J.-i, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9109
  • 47 Minko Y, Marek I. Chem. Commun. 2014; 50: 12597

    • For selected studies, see:
    • 48a Hudrlik PF, Schwartz RH, Kulkarni AK. Tetrahedron Lett. 1979; 20: 2233
    • 48b Reich HJ, Holtan RC, Bolm C. J. Am. Chem. Soc. 1990; 112: 5609
    • 48c Jin F, Xu Y, Huang W. J. Chem. Soc., Perkin Trans. 1 1993; 795
    • 48d Nakajima T, Segi M, Sugimoto F, Hioki R, Yokota S, Miyashita K. Tetrahedron 1993; 49: 8343
    • 48e Cuadrad P, González-Nogal AM. Tetrahedron Lett. 1997; 38: 8117
    • 48f Fleming I, Roberts RS, Smith SC. J. Chem. Soc., Perkin Trans. 1 1998; 1215
    • 48g Cuadrado P, González-Nogal AM. Tetrahedron Lett. 2000; 41: 1111
    • 49a Tsubouchi A, Onishi K, Takeda T. J. Am. Chem. Soc. 2006; 128: 14268
    • 49b Tsubouchi A, Matsuda H, Kira T, Takeda T. Chem. Lett. 2009; 38: 1180
  • 50 Tsubouchi A, Enatsu S, Kanno R, Takeda T. Angew. Chem. Int. Ed. 2010; 49: 7089
  • 51 Wang P.-Y, Duret G, Marek I. Angew. Chem. Int. Ed. 2019; 58: 14995
  • 52 Matsuya Y, Wada K, Minato D, Sugimoto K. Angew. Chem. Int. Ed. 2016; 55: 10079
    • 53a Reich JH, Olson RE, Clark MC. J. Am. Chem. Soc. 1980; 102: 1423
    • 53b Reich HJ, Eisenhart EK, Olson RE, Kelly MJ. J. Am. Chem. Soc. 1986; 108: 7791
    • 54a Kuwajima I, Kato M. Tetrahedron Lett. 1980; 21: 623
    • 54b Kuwajima I. J. Organomet. Chem. 1985; 285: 137
  • 55 Reynolds TE, Bharadwaj AR, Scheidt KA. J. Am. Chem. Soc. 2006; 128: 15382
    • 56a Sasaki M, Kondo Y, Kawahata M, Yamaguchi K, Takeda K. Angew. Chem. Int. Ed. 2011; 50: 6375
    • 56b Sasaki M, Kondo Y, Moto-ishi T, Kawahata M, Yamaguchi K, Takeda K. Org. Lett. 2015; 17: 1280
    • 56c Ando M, Sasaki M, Miyashita I, Takeda K. J. Org. Chem. 2015; 80: 247
  • 57 Takeda K, Fujisawa M, Makino T, Yoshii E, Yamaguchi K. J. Am. Chem. Soc. 1993; 115: 9351
    • 58a Takeda K, Takeda M, Nakajima A, Yoshii E. J. Am. Chem. Soc. 1995; 117: 6400
    • 58b Takeda K, Nakajima A, Takeda M, Okamoto Y, Sato T, Yoshii E, Koizumi T, Shiro M. J. Am. Chem. Soc. 1998; 120: 4947

      For selected studies, see:
    • 59a Takeda K, Ohtani Y. Org. Lett. 1999; 1: 677
    • 59b Takeda K, Nakane D, Takeda M. Org. Lett. 2000; 2: 1903
    • 59c Takeda K, Haraguchi H, Okamoto Y. Org. Lett. 2003; 5: 3705
    • 59d Sasaki M, Kawanishi E, Nakai Y, Matsumoto T, Yamaguchi K, Takeda K. J. Org. Chem. 2003; 68: 9330
    • 59e Sawada Y, Sasaki M, Takeda K. Org. Lett. 2004; 6: 2277
    • 59f Nakai Y, Kawahata M, Yamaguchi K, Takeda K. J. Org. Chem. 2007; 72: 1379
    • 59g Sasaki M, Hashimoto A, Tanaka K, Kawahata M, Yamaguchi K, Takeda K. Org. Lett. 2008; 10: 1803
  • 60 Han H, Smith AB. III. Angew. Chem. Int. Ed. 2017; 56: 14102
  • 61 Zhang H, Ma S, Yuan Z, Chen P, Xie X, Wang X, She X. Org. Lett. 2017; 19: 3478

    • For selected reviews:
    • 62a Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 62b Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
    • 62c Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 62d Huck CJ, Sarlah D. Chem 2020; 6: 1589
    • 62e Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
    • 63a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 63b Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 63c Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257

      For selected studies:
    • 64a Fernández-Ibáñez M. Á, Maciá B, Pizzuti MG, Minnaard AJ, Feringa BL. Angew. Chem. Int. Ed. 2009; 48: 9339
    • 64b Chau ST, Lutz JP, Wu K, Doyle AG. Angew. Chem. Int. Ed. 2013; 52: 9153
    • 64c Kubota K, Watanabe Y, Hayama K, Ito H. J. Am. Chem. Soc. 2016; 138: 4338
    • 64d Grozavu A, Hepburn HB, Smith PJ, Potukuchi HK, Lindsay-Scott PJ, Donohoe TJ. Nat. Chem. 2019; 11: 242
    • 64e Marinic B, Hepburn HB, Grozavu A, Dow M, Donohoe TJ. Chem. Sci. 2021; 12: 742
    • 64f Kischkewitz M, Marinic B, Kratena N, Lai Y, Hepburn HB, Dow M, Christensen KE, Donohoe TJ. Angew. Chem. Int. Ed. 2022; 61: e202204682
    • 64g Ortiz KG, Dotson JJ, Robinson DJ, Sigman MS, Karimov RR. J. Am. Chem. Soc. 2023; 145: 11781
    • 64h Wang R, Park S. ACS Catal. 2023; 13: 7067
    • 64i Somprasong S, Castiñeira Reis M, Harutyunyan SR. Angew. Chem. Int. Ed. 2023; 62: e202217328
    • 64j Hu M, Ding H, DeSnoo W, Tantillo DJ, Nairoukh Z. Angew. Chem. Int. Ed. 2023; 62: e202315108
    • 65a Llaveria J, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 10958
    • 65b Panda S, Coffin A, Nguyen QN, Tantillo DJ, Ready JM. Angew. Chem. Int. Ed. 2016; 55: 2205
    • 65c Hayashi T, Ohmori K, Suzuki K. Chem. Lett. 2011; 40: 612
    • 65d Abell JC, Bold CP, Vicens L, Jentsch T, Velasco N, Tyler JL, Straker RN, Noble A, Aggarwal VK. Org. Lett. 2023; 25: 400
  • 66 Mondal R, Agbaria M, Cohen O, Nairoukh Z. Chem. Eur. J. 2023; 30: e202303588
  • 67 Deng Y, Yang C.-PH, Smith AB. III. J. Am. Chem. Soc. 2021; 143: 1740
  • 68 Ding J, Smith AB. III. J. Am. Chem. Soc. 2023; 145: 18240
  • 69 Cox JB, Kellum AA, Zhang Y, Li B, Smith AB. III. Angew. Chem. Int. Ed. 2022; 61: e202204884
  • 70 Ratushnyy M, Zhukhovitskiy AV. J. Am. Chem. Soc. 2021; 143: 17931
    • 71a Linghu X, Bausch CC, Johnson JS. J. Am. Chem. Soc. 2005; 127: 1833
    • 71b Tar JC, Johnson JS. Org. Lett. 2009; 11: 3870