Synlett
DOI: 10.1055/a-2227-1020
account

Pd-Catalyzed Oxidative Functionalization of Alkenes, Arenes, and 1,3-Dienes Using Molecular Oxygen as the Terminal Oxidant

,
Yasushi Obora
This work was supported in part by the ‘Development of Innovative Catalytic Processes for Organosilicon Functional Materials’ project (PL: Kazuhiko Sato) from the New Energy and Industrial Technology Development Organization (NEDO). This research was also supported by the Kansai University Grant-in-Aid for progress of research in graduate course, 2023.


Abstract

This Account presents palladium-complex-catalyzed oxidative couplings mainly developed by the author’s group, including oxidative amination and silylation of terminal alkenes, direct oxidative arylation of aromatic compounds, and oxidative difunctionalization of 1,3-dienes. The catalytic cycles in these representative reactions feature re-oxidation of the palladium species with molecular oxygen as the terminal oxidant. Varying the combination of palladium catalyst and re-oxidant enables the formation of a variety of bonds through dehydrogenative cross-coupling reactions.

1 Introduction

2 Oxidative Amination of Terminal Alkenes

3 Direct Oxidative Arylation of Aromatic Compounds

4 Oxidative Silylation of Terminal Alkenes

5 Oxidative Difunctionalization of 1,3-Dienes

6 Conclusions and Perspectives



Publication History

Received: 17 November 2023

Accepted after revision: 12 December 2023

Accepted Manuscript online:
12 December 2023

Article published online:
19 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lei A, Shi W, Liu C, Liu W, Zhang H, He C. Oxidative Cross-Coupling Reactions . Wiley; Weinheim: 2016
  • 2 Lei A. Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Springer Berlin Heidelberg; Berlin: 2019
  • 3 Tabaru K, Obora Y. Eur. J. Org. Chem. 2022; e202200618
  • 4 Funes-Ardoiz I, Maseras F. ACS Catal. 2018; 8: 1161
  • 5 Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 1959; 71: 176
  • 6 Liu J, Guðmundsson A, Bäckvall J.-E. Angew. Chem. Int. Ed. 2021; 60: 15686
  • 7 Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
  • 8 Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
  • 9 Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
  • 10 Li X, Jiao N. Chin. J. Chem. 2017; 35: 1349
  • 11 Miura M, Satoh T, Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751
  • 12 Hirano K, Miura M. Chem. Lett. 2015; 44: 868
  • 13 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
  • 14 Hirano K, Miura M. Chem. Sci. 2018; 9: 22
  • 15 Green Oxidation in Organic Synthesis . Jiao N, Stahl SS. John Wiley and Sons; Hoboken: 2019
  • 16 Tang C, Qiu X, Cheng Z, Jiao N. Chem. Soc. Rev. 2021; 50: 8067
  • 17 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 18 Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
  • 19 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
  • 20 Barboza AA, Dantas JA, Costa MO, Chiavegatti A, Jardim GA. de M, Ferreira MA. B. Synthesis 2022; 54: 2081
  • 21 Muzart J. Adv. Synth. Catal. 2022; 364: 2268
  • 22 Le Bras J, Muzart J. Adv. Synth. Catal. 2023; 365: 3727
  • 23 Louillat M.-L, Patureau FW. Chem. Soc. Rev. 2014; 43: 901
  • 24 Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007; 46: 1910
  • 25 Bozell JJ, Hegedus LS. J. Org. Chem. 1981; 46: 2561
  • 26 Timokhin VI, Anastasi NR, Stahl SS. J. Am. Chem. Soc. 2003; 125: 12996
  • 27 Timokhin VI, Stahl SS. J. Am. Chem. Soc. 2005; 127: 17888
  • 28 Pattillo CC, Strambeanu II, Calleja P, Vermeulen NA, Mizuno T, White MC. J. Am. Chem. Soc. 2016; 138: 1265
  • 29 Kohler DG, Gockel SN, Kennemur JL, Waller PJ, Hull KL. Nat. Chem. 2018; 10: 333
  • 30 Jin Y, Jing Y, Li C, Li M, Wu W, Ke Z, Jiang H. Nat. Chem. 2022; 14: 1118
  • 31 Li M, Jin Y, Chen Y, Wu W, Jiang H. J. Am. Chem. Soc. 2023; 145: 9448
  • 32 Obora Y, Shimizu Y, Ishii Y. Org. Lett. 2009; 11: 5058
  • 33 Shimizu Y, Obora Y, Ishii Y. Org. Lett. 2010; 12: 1372
  • 34 Mizuta Y, Yasuda K, Obora Y. J. Org. Chem. 2013; 78: 6332
  • 35 Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
  • 36 Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
  • 37 Nakashima Y, Hirata G, Sheppard TD, Nishikata T. Asian J. Org. Chem. 2020; 9: 480
  • 38 Reznikov AN, Ashatkina MA, Klimochkin YN. Org. Biomol. Chem. 2021; 19: 5673
  • 39 Chen X, Engle KM, Wang D, Yu J. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 40 Zhou L, Lu W. Eur. Chem. J. 2014; 20: 634
  • 41 Kaltenberger S, van Gemmeren M. Acc. Chem. Res. 2023; 56: 2459
  • 42 Moritani I, Fujiwara Y. Tetrahedron Lett. 1967; 8: 1119
  • 43 Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc. 1969; 91: 7166
  • 44 Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
  • 45 Obora Y, Okabe Y, Ishii Y. Org. Biomol. Chem. 2010; 8: 4071
  • 46 Mizuta Y, Obora Y, Shimizu Y, Ishii Y. ChemCatChem 2012; 4: 187
  • 47 Harada S, Yano H, Obora Y. ChemCatChem 2013; 5: 121
  • 48 Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
  • 49 Hosomi A, Endo M, Sakurai H. Chem. Lett. 1976; 5: 941
  • 50 Hosomi A, Sakurai H. Tetrahedron Lett. 1976; 17: 1295
  • 51 Nakai S, Matsui M, Shimizu Y, Adachi Y, Obora Y. J. Org. Chem. 2015; 80: 7317
  • 52 Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
  • 53 Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
  • 54 Li G, Huo X, Jiang X, Zhang W. Chem. Soc. Rev. 2020; 49: 2060
  • 55 Morrow NL. Environ. Health Perspect. 1990; 86: 7
  • 56 Qi Y, Liu Z, Liu S, Cui L, Dai Q, He J, Dong W, Bai C. Catalysts 2019; 9: 97
  • 57 Wu Z, Zhang W. Chin. J. Org. Chem. 2017; 37: 2250
  • 58 Xiong Y, Sun Y, Zhang G. Tetrahedron Lett. 2018; 59: 347
  • 59 Wu X, Gong L.-Z. Synthesis 2019; 51: 122
  • 60 Perry GJ. P, Jia T, Procter DJ. ACS Catal. 2020; 10: 1485
  • 61 Torii K, Kawakubo A, Lin X, Fujihara T, Yajima T, Obora Y. Chem. Eur. J. 2021; 27: 4888
  • 62 Torii K, Tabaru K, Obora Y. Org. Lett. 2021; 23: 4898
  • 63 Salazar CA, Flesch KN, Haines BE, Zhou PS, Musaev DG, Stahl SS. Science 2020; 370: 1454