Synthesis 2024; 56(03): 389-398
DOI: 10.1055/a-2155-3615
short review

Recent Advances on High-Order Dipolar Annulations of Donor–Acceptor Cyclopropanes/Cyclobutanes

Liangliang Yang
,
Haiyang Wang
,
Ming Lang
,
Shiyong Peng
The authors are grateful for financial support from the National Natural Science Foundation of China (22201221).


Abstract

This short review summarizes the recent impressive developments on the high-order dipolar annulations (HODAs) of donor–acceptor cyclopropanes (DACs) and donor–acceptor cyclobutanes (DABs) to afford medium-sized (hetero)cycles.

1 Introduction

2 (3+m) (m > 3) Annulations of Donor–Acceptor Cyclopropanes

2.1 (3+4) Annulations

2.2 (3+5) Annulations

3 (4+m) (m > 2) Annulations of Donor–Acceptor Cyclobutanes

4 Conclusion



Publication History

Received: 21 July 2023

Accepted after revision: 16 August 2023

Accepted Manuscript online:
16 August 2023

Article published online:
28 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 The term ‘annulation’ (a transformation involving the fusion of a new ring to a molecule via two new bonds) is used herein interchangeably with the term ‘cycloaddition’ (the combination of two or more unsaturated structural units to form cyclic adducts), with primary emphasis being the construction of cyclic organic compounds.

    • For Huisgen cycloadditions, see:
    • 2a Huisgen PD. R. Angew. Chem. Int. Ed. 1963; 2: 565
    • 2b Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
    • 2c Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 2d Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293

    • For other examples of (m+2) annulations, see:
    • 2e Kusama H, Suzuki Y, Takaya J, Iwasawa N. Org. Lett. 2006; 8: 895
    • 2f Shintani R, Park S, Hayashi T. J. Am. Chem. Soc. 2007; 129: 14866
    • 2g Lee DJ, Han HS, Shin J, Yoo EJ. J. Am. Chem. Soc. 2014; 136: 11606
    • 2h He M, Chen N, Wang J, Peng S. Org. Lett. 2019; 21: 5167
    • 2i Zhang Q.-L, Xiong Q, Li M.-M, Xiong W, Shi B, Lan Y, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2020; 59: 14096
    • 2j Cheng B, Li Y, Wang T, Zhang X, Li H, He Y, Li Y, Zhai H. J. Org. Chem. 2020; 85: 6794
    • 2k Cheng B, Zhang X, Li H, He Y, Li Y, Sun H, Wang T, Zhai H. Adv. Synth. Catal. 2020; 362: 4668
    • 2l Yan B.-W, Zuo L.-H, Chang X.-W, Liu T, Cui M.-Y, Liu Y, Sun H.-Y, Chen W.-P, Guo W.-S. Org. Lett. 2021; 23: 351
    • 3a Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 3b Yue G, Liu B. Chin. J. Org. Chem. 2020; 40: 3132
    • 4a Zhang M.-M, Qu B.-L, Shi B, Xiao W.-J, Lu L.-Q. Chem. Soc. Rev. 2022; 51: 4146
    • 4b Although the term ‘dipole’ should be restricted to 1,3-dipoles as defined by Huisgen for species stabilized by resonance, the terms ‘1,m-dipoles’ and ‘1,n-dipoles’ used herein represent dipolar or zwitterionic species. (m+n) Annulation is the primary emphasis.

      For typical reviews, see:
    • 5a Reissig HU, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 5b Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 5c De Simone F, Waser J. Synthesis 2009; 3353
    • 5d Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 5e Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 5f Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 5g Matsuo J. Tetrahedron Lett. 2014; 55: 2589
    • 5h Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
    • 5i Reissig H.-U, Zimmer R. Angew. Chem. Int. Ed. 2015; 54: 5009
    • 5j O’Connor R, Wood JL, Stoltz BM. Isr. J. Chem. 2016; 56: 431
    • 5k Wang L, Tang Y. Isr. J. Chem. 2016; 56: 463
    • 5l Vemula N, Pagenkopf BL. Org. Chem. Front. 2016; 3: 1205
    • 5m Ivanova OA, Trushkov IV. Chem. Rec. 2019; 19: 2189
    • 5n Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 5o Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
    • 5p Caillé J, Robiette R. Org. Biomol. Chem. 2021; 19: 5702
    • 5q Ghosh K, Das S. Org. Biomol. Chem. 2021; 19: 965
    • 5r Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
    • 5s Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
    • 5t Deepthi A, Meenakshy CB, Mohan M. Synthesis 2023; 55: in press DOI: 10.1055/a-2096-4302.
  • 6 Ivanova OA, Budynina EM, Grishin YK, Trushkov IV, Verteletskii PV. Angew. Chem. Int. Ed. 2008; 47: 1107
  • 7 Ivanova OA, Budynina EM, Grishin YK, Trushkov IV, Verteletskii PV. Eur. J. Org. Chem. 2008; 5329
  • 8 Xu H, Hu J, Wang L, Liao S, Tang Y. J. Am. Chem. Soc. 2015; 137: 8006
  • 9 Garve LB, Pawliczek M, Wallbaum J, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 521
  • 10 Groenendaal B, Ruijter E, Orru RV. A. Chem. Commun. 2008; 5474
    • 11a Wang Z, Zhang H, Wang D, Xu P, Luo Y. Chem. Commun. 2017; 53: 8521
    • 11b In another report, using 1-aza-dienes only resulted in a (3+2) cycloaddition, see: Verma K, Banerjee P. Adv. Synth. Catal. 2017; 359: 3848
  • 12 Augustin AU, Merz JL, Jones PG, Mloston G, Werz DB. Org. Lett. 2019; 21: 9405
    • 13a Sainte F, Serckx-Poncin B, Hesbain-Frisque AM, Ghosez L. J. Am. Chem. Soc. 1982; 104: 1428
    • 13b Ghosez L, Bayard P, Nshimyumukiza P, Gouverneur V, Sainte F, Beaudegnies R, Rivera M, Frisque-Hesbain A.-M, Wynants C. Tetrahedron 1995; 51: 11021
    • 13c Ntirampebura D, Ghosez L. Tetrahedron Lett. 1999; 40: 7079
    • 13d Jnoff E, Ghosez L. J. Am. Chem. Soc. 1999; 121: 2617
    • 13e Panunzio M, Tamanini E, Bandini E, Campana E, D’Aurizio A, Vicennati P. Tetrahedron 2006; 62: 12270
    • 13f Watanabe Y, Washio T, Krishnamurthi J, Anada M, Hashimoto S. Chem. Commun. 2012; 48: 6969
    • 13g Jayakumar S, Louven K, Strohmann C, Kumar K. Angew. Chem. Int. Ed. 2017; 56: 15945
  • 14 Nicolai S, Waser J. Angew. Chem. Int. Ed. 2022; 61: e202209006
  • 15 Garve LB, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 9226
  • 16 Li B, Qiu Z, Ma A, Peng J, Feng N, Du J, Pan H, Zhang X, Xu X. Org. Lett. 2020; 22: 1903
  • 18 Zhang J, Zhou P, Xiao D, Liu W. Chin. J. Org. Chem. 2021; 41: 4154
  • 19 For a pioneering report, see: Zhu C, Xu G, Sun J. Angew. Chem. Int. Ed. 2016; 55: 11867
  • 20 Garve LK. B, Kreft A, Jones PG, Werz DB. J. Org. Chem. 2017; 82: 9235
  • 21 Zhang C, Tian J, Ren J, Wang Z. Chem. Eur. J. 2017; 23: 1231
  • 22 Okabe A, Harada S, Takeda T, Nishida A. Eur. J. Org. Chem. 2019; 3916
  • 23 Guarnieri-Ibáñez A, de Aguirre A, Besnard C, Poblador-Bahamonde AI, Lacour J. Chem. Sci. 2021; 12: 1479
    • 24a Zhu Y, Yang L, Zhang X, Xu W, He J, Wang H, Lang M, Peng S. Org. Lett. 2022; 24: 6443
    • 24b He J, Yang L, Zhang X, Xu W, Wang H, Lang M, Wang J, Peng S. ACS Catal. 2022; 12: 14647
  • 25 Yang L, He J, Wang H, Xu W, Zhang X, Lang M, Wang J, Peng S. ACS Catal. 2023; 13: 5752
  • 26 Shimada S, Saigo K, Nakamura H, Hasegawa M. Chem. Lett. 1991; 1149
    • 27a Allart EA, Christie SD. R, Pritchard GJ, Elsegood MR. J. Chem. Commun. 2009; 7339
    • 27b Parsons AT, Johnson JS. J. Am. Chem. Soc. 2009; 131: 14202
    • 27c Moustafa MM. A. R, Stevens AC, Machin BP, Pagenkopf BL. Org. Lett. 2010; 12: 4736
    • 27d Perrotta D, Racine S, Vuilleumier J, de Nanteuil F, Waser J. Org. Lett. 2015; 17: 1030
  • 28 Moustafa MM. A. R, Pagenkopf BL. Org. Lett. 2010; 12: 4732
    • 29a Feng L.-W, Ren H, Xiong H, Wang P, Wang L, Tang Y. Angew. Chem. Int. Ed. 2017; 56: 3055
    • 29b Kuang X.-K, Zhu J, Zhou L, Wang L, Wang SR, Tang Y. ACS Catal. 2018; 8: 4991
    • 30a Vemula N, Stevens AC, Schon TB, Pagenkopf BL. Chem. Commun. 2014; 50: 1668
    • 30b Vemula N, Pagenkopf BL. Eur. J. Org. Chem. 2015; 4900
  • 31 Tong D, Wu J, Bazinski N, Koo D, Vemula N, Pagenkopf BL. Chem. Eur. J. 2019; 25: 15244
  • 32 Wei S, Yin L, Wang SR, Tang Y. Org. Lett. 2019; 21: 1458
  • 33 Wu J, Winiarz P, Patel D, de Jong J, Tong D, Chidley T, Vemula N, Pagenkopf BL. Org. Lett. 2020; 22: 3140
  • 34 Stevens AC, Palmer C, Pagenkopf BL. Org. Lett. 2011; 13: 1528
  • 35 Hu J, Wang L, Xu H, Xie Z, Tang Y. Org. Lett. 2015; 17: 2680
  • 36 Hou M, Li J, Rao F, Chen Z, Wei Y. Chem. Commun. 2022; 58: 5865