Synlett 2024; 35(07): 789-800
DOI: 10.1055/a-2095-5164
account

Pt(II)-Bisacetylide ‘Roller Wheels’: Molecular Engineering towards Small Bandgap, High Crystallinity, and Controlled Triplet Exciton Processes

Yang Qin
Y.Q. would like to thank National Science Foundation (CHE-2101535) for financial support of this research.


Abstract

Triplet excitons are ubiquitous in organic chromophores and possess intrinsically longer lifetimes than their singlet exciton counterparts, and thus potentially larger diffusion lengths that have been considered beneficial for organic solar cells (OSCs). However, existing triplet-generating materials rarely possess low bandgap, high triplet energy and yield, and good crystallinity and charge mobility within a single compound. In this Account, I first describe the rationales behind our ‘roller-wheel’-type molecular structural designs through a brief literature survey and our initial attempt in Pt-containing conjugated polymers. Then, a series of novel Pt-bisacetylide-containing small molecules will be discussed. I mainly focus on the thought process for selecting the building blocks and detail their synthetic strategies, as well as their solid-state structures, especially that of the single crystals, confirming the effectiveness of our structural designs. Next, photophysical properties of these compounds are discussed in the context of optical spectroscopy and transient absorption spectroscopy, which is corroborated by theoretical calculations. Organic solar cells employing these compounds are introduced next, one of which displayed record-setting performance among Pt-containing materials. I end this Account with an outlook on future works with a focus on molecular engineering to control triplet excited-state energetics and dynamics.

1 Introduction

2 Initial Attempt

3 Rationale of Design

4 Synthesis of ‘Roller Wheels’

5 Solid-State Structures of ‘Roller Wheels’

6 Photophysical Studies

7 Theoretical Investigation

8 Device Application

9 Outlook – Managing Triplet Excited States



Publication History

Received: 02 May 2023

Accepted after revision: 17 May 2023

Accepted Manuscript online:
17 May 2023

Article published online:
06 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. J. Chem. Soc., Chem. Commun. 1977; 578
    • 3a Skotheim TA, Reynolds JR. Handbook of Conducting Polymers, 3rd ed., Vol. 2. CRC Press; Boca Raton: 2007
    • 3b Salaneck WR, Seki K, Kahn A, Pireaus J.-J. Conjugated Polymer and Molecular Interfaces – Science and Technology for Photonic and Optoelectronic Applications. Marcel Dekker; New York, Basel: 2002
    • 3c Leclerc M, Morin J.-F. Design and Synthesis of Conjugated Polymers . Wiley-VCH; Weinheim: 2010
    • 4a Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 4b Roberts ME, Sokolov AN, Bao Z. J. Mater. Chem. 2009; 19: 3351
    • 4c Sirringhaus H, Bird M, Richards T, Zhao N. Adv. Mater. 2010; 22: 3893
    • 5a Günes S, Neugebauer H, Sariciftci NS. Chem. Rev. 2007; 107: 1324
    • 5b Thompson BC, Fréchet JM. J. Angew. Chem. Int. Ed. 2008; 47: 58
    • 5c Cheng Y.-J, Yang S.-H, Hsu C.-S. Chem. Rev. 2009; 109: 5868
    • 6a Mortimer RJ. Chem. Soc. Rev. 1997; 26: 147
    • 6b Mortimer RJ, Dyer AL, Reynolds JR. Displays 2006; 27: 2
    • 6c Argun AA, Aubert P.-H, Thompson BC, Schwendeman I, Gaupp CL, Hwang J, Pinto NJ, Tanner DB, MacDiarmid AG, Reynolds JR. Chem. Mater. 2004; 16: 4401
    • 7a Liu B. Conjugated Polymers for Biological and Biomedical Applications. Wiley-VCH; Weinheim: 2018
    • 7b Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Chem. Rev. 2019; 119: 5461
    • 7c Wang B, Queenan BN, Wang S, Nilsson KP. R, Bazan GC. Adv. Mater. 2019; 31: 1806701
    • 7d Petty AJ. II, Keate RL, Jiang B, Ameer GA, Rivnay J. Chem. Mater. 2020; 32: 4095
    • 7e Dimov IB, Moser M, Malliaras GG, McCulloch I. Chem. Rev. 2022; 122: 4356
    • 8a Jørgensen M, Carlé JE, Søndergaard RR, Lauritzen M, Dagnæs-Hansen NA, Byskov SL, Andersen TR, Larsen-Olsen TT, Böttiger AP. L, Andreasen B, Fu L, Zuo L, Liu Y, Bundgaard E, Zhan X, Chen H, Krebs FC. Sol. Energy Mater. Sol. Cells 2013; 119: 84
    • 8b Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M. Adv. Mater. 2014; 26: 29
    • 8c Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K. Adv. Mater. 2016; 28: 7821
    • 9a Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv. Mater. 2021; 33: 2102420
    • 9b Zhang L, Zhu X, Deng D, Wang Z, Zhang Z, Li Y, Zhang J, Lv K, Liu L, Zhang X, Zhou H, Ade H, Wei Z. Adv. Mater. 2022; 34: 2106316
    • 9c He C, Pan Y, Ouyang Y, Shen Q, Gao Y, Yan K, Fang J, Chen Y, Ma C.-Q, Min J, Zhang C, Zuo L, Chen H. Energy Environ. Sci. 2022; 15: 2537
    • 9d Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, Zhong W, Hao T, Song J, Xue X, Zhou Z, Zeng R, Zhu H, Chen C.-C, MacKenzie RC. I, Zou Y, Nelson J, Zhang Y, Sun Y, Liu F. Nat. Mater. 2022; 21: 656
    • 9e Sun R, Wu Y, Yang X, Gao Y, Chen Z, Li K, Qiao J, Wang T, Guo J, Liu C, Hao X, Zhu H, Min J. Adv. Mater. 2022; 34: 2110147
    • 10a Hoppe H, Sariciftci NS. J. Mater. Res. 2004; 19: 1924
    • 10b Blom PW. M, Mihailetchi VD, Koster LJ. A, Markov DE. Adv. Mater. 2007; 19: 1551
    • 10c Servaites JD, Ratner MA, Marks TJ. Energy Environ. Sci. 2011; 4: 4410
    • 10d Dang MT, Hirsch L, Wantz G, Wuest JD. Chem. Rev. 2013; 113: 3734
    • 10e Heeger AJ. Adv. Mater. 2014; 26: 10
    • 11a Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science 1995; 270: 1789
    • 11b Yu G, Heeger AJ. J. Appl. Phys. 1995; 78: 4510
    • 11c Granström M, Petritsch K, Arais AC, Lux A, Andersson MR, Friend RH. Nature 1998; 395: 257
    • 11d Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T. Appl. Phys. Lett. 2001; 78: 841
    • 12a Brédas JL, Beljonne D, Coropceanu V, Cornil J. Chem. Rev. 2004; 104: 4971
    • 12b Scheblykin IG, Yartsev A, Pullerits T, Gulbinas V, Sundström V. J. Phys. Chem. B 2007; 111: 6303
    • 12c Brédas JL, Norton JE, Cornil J, Coropceanu V. Acc. Chem. Res. 2009; 42: 1691
    • 12d Credgington D, Jamieson FC, Walker B, Nguyen T.-Q, Durrant JR. Adv. Mater. 2012; 24: 2135
    • 13a Gregg BA, Sprague J, Peterson MW. J. Phys. Chem. B 1997; 101: 5362
    • 13b Pettersson LA. A, Roman LS, Inganäs O. J. Appl. Phys. 1999; 86: 487
    • 13c Markov DE, Amsterdam E, Blom PW. M, Sieval AB, Hummelen JC. J. Phys. Chem. A 2005; 109: 5266
    • 13d Shaw P, Ruseckas A, Samuel ID. W. Adv. Mater. 2008; 20: 3516
    • 13e Lin JD. A, Mikhnenko OV, Chen J, Masri Z, Ruseckas A, Mikhailovsky A, Raab RP, Liu J, Blom PW. M, Loi MA, Garcia-Cervera GJ, Samuel ID. W, Nguyen T.-Q. Mater. Horiz. 2014; 1: 280
    • 14a van Bavel S, Veenstra S, Loos J. Macromol. Rapid Commun. 2010; 31: 1835
    • 14b Brabec CJ, Heeney M, McCulloch I, Nelson J. Chem. Soc. Rev. 2011; 40: 1185
    • 14c Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem. Rev. 2014; 114: 7006
    • 15a Chen L.-M, Hong Z, Li G, Yang Y. Adv. Mater. 2009; 21: 1434
    • 15b Peet J, Heeger AJ, Bazan GC. Acc. Chem. Res. 2009; 42: 1700
    • 15c Wang M, Wudl F. J. Mater. Chem. 2012; 22: 24297
    • 15d Dang MT, Wuest JD. Chem. Soc. Rev. 2013; 42: 9105
    • 16a Jørgensen M, Norrman K, Krebs FC. Sol. Energy Mater. Sol. Cells 2008; 92: 686
    • 16b Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv. Mater. 2012; 24: 580
    • 16c Mateker WR, McGehee MD. Adv. Mater. 2017; 28: 1603940
    • 17a Köhler A, Wittmann HF, Friend RH, Khan MS, Lewis J. Synth. Met. 1996; 77: 147
    • 17b Beljonne D, Wittmann HF, Köhler A, Graham S, Younus M, Lewis J, Raithby PR, Khan MS, Friend RH, Brédas JL. J. Chem. Phys. 1996; 105: 3868
    • 17c Chawdhury N, Köhler A, Friend RH, Wong W.-Y, Lewis J, Younus M, Raithby PR, Corcoran TC, Al-Mandhary MR. A, Khan MS. J. Chem. Phys. 1999; 110: 4963
    • 17d Wilson JS, Köhler A, Friend RH, Al-Suti MK, Al-Mandhary MR. A, Khan MS, Raithby PR. J. Chem. Phys. 2000; 113: 7627
    • 17e Liu Y, Jiang S, Glusac K, Powell DH, Anderson DF, Schanze KS. J. Am. Chem. Soc. 2002; 124: 12412
    • 17f Shao Y, Yang Y. Adv. Mater. 2005; 17: 2841
    • 17g Devi LS, Al-Suti MK, Dosche C, Khan MS, Friend RH, Köhler A. Phys. Rev. B: Condens. Matter Mater. Phys. 2008; 78: 045210
    • 17h Fishchuk II, Kadashchuk A, Devi LS, Heremans P, Bässler H, Köhler A. Phys. Rev. B: Condens. Matter Mater. Phys. 2008; 78: 045211
    • 17i Schulz GL, Holdcroft S. Chem. Mater. 2008; 20: 5351
    • 17j Ramakrishna G, Goodson TIII, Rogers-Haley JE, Cooper TM, McLean DG, Urbas A. J. Phys. Chem. C 2009; 113: 1060
    • 17k Hoffmann ST, Scheler E, Koenen J.-M, Forster M, Scherf U, Strohriegl P, Bässler H, Köhler A. Phys. Rev. B: Condens. Matter Mater. Phys. 2010; 81: 165208
    • 17l Köhler A, Bässler H. J. Mater. Chem. 2011; 21: 4003
    • 17m Hsu H.-Y, Vella JH, Myers JD, Xue J, Schanze KS. J. Phys. Chem. C 2014; 118: 24282
    • 17n Chen Z, Hsu H.-Y, Arca M, Schanze KS. J. Phys. Chem. B 2015; 119: 7198
    • 17o Qian M, Zhang R, Hao J, Zhang W, Zhang Q, Wang J, Tao Y, Chen S, Fang J, Huang W. Adv. Mater. 2015; 27: 3546
    • 17p Yost SR, Hontz E, Yeganeh S, van Voorhis T. J. Phys. Chem. C 2012; 116: 17369
    • 17q Luppi BT, Majak D, Gupta M, Rivard E, Shankar K. J. Mater. Chem. A 2019; 7: 2445
    • 18a Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv. Mater. 2014; 26: 7931
    • 18b Wong MY, Zysman-Colman E. Adv. Mater. 2017; 29: 1605444
    • 18c Mukherjee S, Thilagar P. Chem. Commun. 2015; 51: 10988
    • 19a Smith MB, Michl J. Chem. Rev. 2010; 110: 6891
    • 19b Chan W.-L, Berkelbach TC, Provorse MR, Monahan NR, Tritsch JR, Hybertsen M, Reichman DR, Gao J, Zhu X.-Y. Acc. Chem. Res. 2013; 46: 1321
    • 20a Rao A, Wilson MW. B, Hodgkiss JM, Albert-Seifried S, Bassler H, Friend RH. J. Am. Chem. Soc. 2010; 132: 12698
    • 20b Congreve DN, Lee J, Thompson NJ, Hontz E, Tost SR, Reusswig PD, Bahlke ME, Reineke S, van Voorhis T, Baldo MA. Science 2013; 340: 334
    • 20c Tritsch JR, Chan W.-L, Wu X, Monahan NR, Zhu X.-Y. Nat. Commun. 2013; 4: 2679
    • 21a Jiang B, Yang SW, Bailey SL, Hermans LG, Niver RA, Bolcar MA, Jones WE. Jr. Coord. Chem. Rev. 1998; 171: 365
    • 21b Kingsborough RP, Swager TM. Transition Metals in Polymeric π-Conjugated Organic Frameworks . In Progress in Inorganic Chemistry, Vol. 48. Karlin KD. John Wiley & Sons; Hoboken, NJ: 1999: 123
    • 21c Hirao T. Coord. Chem. Rev. 2002; 226: 81
    • 21d Liu Y, Li Y, Schanze KS. J. Photochem. Photobiol., C 2002; 3: 1
    • 21e Moorlag C, Sih BC, Stott TL, Wolf MO. J. Mater. Chem. 2005; 15: 2433
    • 21f Choy WC. H, Chan WK, Yuan Y. Adv. Mater. 2014; 26: 5368
    • 21g Castellano FN. Acc. Chem. Res. 2015; 48: 828
    • 22a Yersin H, Donges D. Top. Curr. Chem. 2001; 214: 81
    • 22b Williams JA. G. Top. Curr. Chem. 2007; 281: 205
    • 22c Wong W.-Y. Dalton Trans. 2007; 4495
    • 22d Wong W.-Y. J. Inorg. Organomet. Polym. Mater. 2005; 15: 197
    • 22e Ng A, Ho C.-L, Fung M.-K, Sun YC, Shao S.-Y, Fu Y.-Y, Ng AM.-C, Li CH, Cheung WK, Leung YH, Djurisic AB, Wang Q, He Z, Wang X, Chan W.-K, Xie Z.-Y, Zapien JA, To CH, Wong W.-Y. Macromol. Chem. Phys. 2012; 213: 1300
    • 22f Yan LY, Zhao Y, Wang X, Wang X.-Z, Wong W.-Y, Liu Y, Wu W, Xiao Q, Wang G, Zhou X, Zeng W, Li C, Wang X, Wu H. Macromol. Rapid Commun. 2012; 33: 603
    • 23a Wong W.-Y. Macromol. Chem. Phys. 2008; 209: 14
    • 23b Wong W.-Y, Ho C.-L. Acc. Chem. Res. 2010; 43: 1246
    • 23c Wong W.-Y, Harvey PD. Macromol. Rapid Commun. 2010; 31: 671
    • 23d Ho C.-L, Wong W.-Y. Coord. Chem. Rev. 2013; 257: 1614
    • 23e Wong W.-Y, Chan S.-M, Choi K.-H, Cheah K.-W, Chan W.-K. Macromol. Rapid Commun. 2000; 21: 453
    • 23f Guo F, Kim Y.-G, Reynolds JR, Schanze KS. Chem. Commun. 2006; 1887
    • 23g Wong W.-Y, Wang X.-Z, He Z, Chan K.-K, Djurisic AB, Cheung K.-Y, Yip C.-T, Ng AM.-C, Xi YY, Mak CS. K, Chan W.-K. J. Am. Chem. Soc. 2007; 129: 14372
    • 23h Mei J, Ogawa K, Kim Y.-G, Heston NC, Arenas DJ, Nasrollahi Z, McCarley TD, Tanner DB, Reynolds JR, Schanze KS. ACS Appl. Mater. Interfaces 2009; 1: 150
    • 23i Wu P.-T, Bull T, Kim FS, Luscombe CK, Jenekhe SA. Macromolecules 2009; 42: 671
    • 24a Wong W.-Y, Wang X.-Z, He Z, Djurisic AB, Yip C.-T, Cheung K.-Y, Wang H, Mak CS. K, Chan W.-K. Nat. Mater. 2007; 6: 521
    • 24b Baek NS, Hau SK, Yip H.-L, Acton O, Chen K.-S, Jen AK.-Y. Chem. Mater. 2008; 20: 5734
    • 24c Li L, Ho C.-L, Wong W.-Y, Cheung K.-Y, Fung M.-K, Lam W.-T, Djurisic AB, Chan W.-K. Adv. Funct. Mater. 2008; 18: 2824
    • 24d He W, Jiang Y, Qin Y. Polym. Chem. 2014; 5: 1298
    • 24e Hu K, Pandres E, Qin Y. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 2662
    • 25a Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
    • 25b Ziessel R, Ulrich G, Harriman A. New J. Chem. 2007; 31: 496
    • 25c Ulrich G, Ziessel R, Harriman A. Angew. Chem. Int. Ed. 2008; 47: 1184
    • 25d Boens N, Leen V, Dehaen W. Chem. Soc. Rev. 2012; 41: 1130
  • 26 Murgatroyd PN. J. Phys. D: Appl. Phys. 1970; 3: 151
    • 27a Takimiya K, Osaka I, Nakano M. Chem. Mater. 2014; 26: 587
    • 27b Jiang J.-M, Yuan M.-C, Dinakaran K, Hariharan A, Wei K.-H. J. Mater. Chem. A 2013; 1: 4415
    • 27c Yuen JD, Wudl F. Energy Environ. Sci. 2013; 6: 392
    • 27d Luo H, Liu Z, Zhang D. Polym. J. 2018; 50: 21
    • 28a Liang Y, Yu L. Acc. Chem. Res. 2010; 43: 1227
    • 28b Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem. Rev. 2016; 116: 7397
    • 29a Wang Y, Michinobu T. J. Mater. Chem. C 2016; 4: 6200
    • 29b Chua MH, Zhu Q, Tang T, Shah KW, Xu J. Sol. Energy Mater. Sol. Cells 2019; 197: 32
    • 30a He W, Livshits MY, Dickie D, Yang J, Quinnett R, Rack JJ, Wu Q, Qin Y. Chem. Sci. 2016; 7: 5798
    • 30b He W, Livshits MY, Dickie D, Zhang Z, Mejiaortega LE, Rack JJ, Wu Q, Qin Y. J. Am. Chem. Soc. 2017; 139: 14109
  • 31 Taybet B, Kerstin S, Tatjana EB, Katrin F, Silvia J. Org. Electron. 2013; 14: 344
  • 32 Dubinina GG, Price SC, Abboud KA, Wicks G, Wnuk P, Stepanenko Y, Drobizhev M, Rebane A, Schanze KS. J. Am. Chem. Soc. 2012; 134: 19346
  • 33 Pope M, Swenberg CE. Electronic Processes in Organic Crystals and Polymers . Oxford University Press; New York/Oxford: 1999
  • 34 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K. JA, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 09, Revision D.01 . Gaussian Inc; Wallingford CT: 2009
  • 35 Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 299
  • 36 Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
  • 37 Martin RL. J. Chem. Phys. 2003; 118: 4775
  • 38 Dreuw A, Head-Gordon M. J. Am. Chem. Soc. 2004; 126: 4007
    • 39a Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C. J. Am. Chem. Soc. 2012; 134: 14706
    • 39b Im Y, Kim M, Cho YJ, Seo J.-A, Yook KS, Lee JY. Chem. Mater. 2017; 29: 1946
    • 39c Penfold TJ, Dias FB, Monkman AP. Chem. Commun. 2018; 54: 3926
    • 39d dos Santos PL, Etherington MK, Monkman AP. J. Mater. Chem. C 2018; 6: 4842
  • 40 Livshits MY, He W, Zhang Z, Qin Y, Rack JJ. J. Phys. Chem. C 2019; 123: 16556
    • 41a Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv. Mater. 2016; 28: 9423
    • 41b Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, wie Z, Zhang Z.-G, Li Y. Nat. Commun. 2018; 9: 743
    • 41c Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J. Am. Chem. Soc. 2017; 139: 7148
    • 41d Zheng N, Mahmood K, Zhong W, Liu F, Zhu P, Wang Z, Xie B, Chen Z, Zhang K, Ying L, Huang F, Cao Y. Nano Energy 2019; 58: 724
  • 42 Gillett AJ, Friend RH, Beljonne D. Chem. Mater. 2022; 34: 7095