Synthesis 2023; 55(22): 3701-3724
DOI: 10.1055/a-2091-8062
review

Exploring Chemical Modifications of Aromatic Amino Acid Residues in Peptides

Susanta Bhunia
a   Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India   URL: www.msmlabiitkgp.com
,
Manasa Purushotham
b   Department of Chemistry, Bangalore University, Bangalore-560056, Karnataka, India
,
Ganesh Karan
a   Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India   URL: www.msmlabiitkgp.com
,
Bishwajit Paul
b   Department of Chemistry, Bangalore University, Bangalore-560056, Karnataka, India
,
Modhu Sudan Maji
a   Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India   URL: www.msmlabiitkgp.com
› Author Affiliations
M.S.M. gratefully acknowledges the Council of Scientific and Industrial Research, India (Grant no. 02(0433)/21/EMR-II) for funding. B.P sincerely thanks the Department of Science and Technology, Science and Engineering Research Board (DST-SERB) of India (Grant no. SUR/2022/001257) for financial support. B.P. also acknowledges the University Grants Commission, Faculty Recharge Progamme (UGC-FRP) and Bangalore University (U.O DEV:D2a:BU-RP:2020-21) for funding. S.B. and G.K. thank the CSIR, India for fellowships. M.P. thanks the DST, Government of India, for financial support (Grant no. SR/WOS-A/CS-8/2017) under the Women Scientists Scheme.


Abstract

The chemical diversification of biomolecules set forth a significant area of research that constitutes an important intersection between chemistry and biology. Amino acids and peptides are the fundamental building blocks of proteins and play essential roles in all living organisms. While significant efforts have been geared toward the chemical modification of amino acid residues, particularly the functionalization of reactive functional groups such as lysine NH2 and cysteine SH, the exploration of the aromatic amino acid residues of tryptophan, tyrosine, phenylalanine, and histidine has been relatively limited. Therefore, this review highlights strategies for the side-chain functionalization of these four aromatic amino acids in peptides, with a focus on elucidating the underlying mechanisms. We have also illustrated the use of these modifications in the chemical and biological realm.

1 Introduction

2 Tryptophan Modifications

3 Tyrosine Modifications

4 Phenylalanine Modifications

5 Histidine Modifications

6 Perspectives and Future Outlook



Publication History

Received: 09 April 2023

Accepted after revision: 11 May 2023

Accepted Manuscript online:
11 May 2023

Article published online:
19 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For aromatic amino acid containing drugs and natural products, see:
    • 2a Borthwick AD. Chem. Rev. 2012; 112: 3641
    • 2b Alkhalaf LM, Ryan KS. Chem. Biol. 2015; 22: 317
    • 2c Reynolds DW, Campbell JM, Johnson BS, Joshi BK, Facchine KL, Long S, O’Connell TM, Paulus IV, Sides SL, Kraft ES, Wolters AM. J. Pharm. Sci. 2017; 106: 982
    • 2d Clark AM, Hufford CD. Phytochemistry 1978; 17: 552
    • 2e Zheng C.-J, Shao C.-L, Wu L.-Y, Chen M, Wang K.-L, Zhao D.-L, Sun X.-P, Chen G.-Y, Wang C.-Y. Mar. Drugs 2013; 11: 2054
    • 2f Turner E, Klevit R, Hager LJ, Shapiro BM. Biochemistry 1987; 26: 4028
    • 2g Turner E, Hager LJ, Shapiro BM. Science 1988; 242: 939
    • 2h Braunshausen A, Seebeck FP. J. Am. Chem. Soc. 2011; 133: 1757
    • 2i Pfeiffer C, Bauer T, Surek B, Schömig E, Gründemann D. Food Chem. 2011; 129: 1766
    • 2j Halliwell B, Cheah IK, Tang RM. Y. FEBS Lett. 2018; 592: 3357
    • 2k Hatai J, Pal S, Jose GP, Bandyopadhyay S. Inorg. Chem. 2012; 51: 10129
    • 2l Morita H, Shimbo K, Shigemori H, Kobayashi J. Bioorg. Med. Chem. Lett. 2000; 10: 469
    • 4a Glaser F, Steinberg DM, Vakser IA, Ben-Tal N. Proteins 2001; 43: 89
    • 4b Anashkina A, Kuznetsov E, Esipova N, Tumanyan V. Proteins 2007; 67: 1060
  • 6 Burley AS. K, Petsko GA. Science 1985; 229: 23
  • 7 Correa A. Eur. J. Inorg. Chem. 2021; 2928
  • 8 Sahu S, Banerjee A, Kundu S, Bhattacharyya A, Maji MS. Org. Biomol. Chem. 2022; 20: 3029
  • 9 Kjærsgaard NL, Nielsen TB, Gothelf KV. ChemBioChem 2022; 23: e202200245
  • 10 Kesselheim AS, Avorn J. Nat. Rev. Drug Discovery 2013; 12: 425
    • 11a Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Angew. Chem. Int. Ed. 2019; 58: 4810
    • 11b Brittain WD. G, Coxon CR. Chem. Eur. J. 2022; 28: e202103305
    • 12a Muttenthaler M, King GF, Adams DJ, Alewood PF. Nat. Rev. Drug Discovery 2021; 20: 309
    • 12b Albericio F, Kruger HG. Future Med. Chem. 2012; 4: 1527
    • 13a Hoyt EA, Cal PM. S. D, Oliveira BL, Bernardes GJ. L. Nat. Rev. Chem. 2019; 3: 147
    • 13b Ochtrop P, Hackenberger CP. R. Curr. Opin. Chem. Biol. 2020; 58: 28
    • 13c Amamoto Y, Aoi Y, Nagashima N, Suto H, Yoshidome D, Arimura Y, Osakabe A, Kato D, Kurumizaka H, Kawashima SA, Yamatsugu K, Kanai M. J. Am. Chem. Soc. 2017; 139: 7568
  • 14 Sahu S, Karan G, Roy L, Maji MS. Chem. Sci. 2022; 13: 2355
  • 15 Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
  • 16 Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
  • 17 Sharma K, Sharma KK, Sharma A, Jain R. Drug Discovery Today 2022; 103464
  • 18 Reddy NC, Kumar M, Molla R, Rai V. Org. Biomol. Chem. 2020; 18: 4669
    • 19a Williams TJ, Reay AJ, Whitwood AC, Fairlamb IJ. S. Chem. Commun. 2014; 50: 3052
    • 19b Reay AJ, Hammarback LA, Bray JT. W, Sheridan T, Turnbull D, Whitwood AC, Fairlamb IJ. S. ACS Catal. 2017; 7: 5174
    • 19c Mao R, Xi S, Shah S, Roy MJ, John A, Lingford JP, Gäde G, Scott NE, Goddard-Borger ED. J. Am. Chem. Soc. 2021; 143: 12699
  • 20 Ruiz-Rodríguez J, Albericio F, Lavilla R. Chem. Eur. J. 2010; 16: 1124
  • 21 Dong H, Limberakis C, Liras S, Price D, James K. Chem. Commun. 2012; 48: 11644
  • 22 Mendive-Tapia L, Preciado S, García J, Ramón R, Kielland N, Albericio F, Lavilla R. Nat. Commun. 2015; 6: 7160
  • 23 Mendive-Tapia L, Bertran A, García J, Acosta G, Albericio F, Lavilla R. Chem. Eur. J. 2016; 22: 13114
  • 24 Zhu Y, Bauer M, Ploog J, Ackermann L. Chem. Eur. J. 2014; 20: 13099
    • 25a Zhu Y, Bauer M, Ackermann L. Chem. Eur. J. 2015; 21: 9980
    • 25b Kaplaneris N, Puet A, Kallert F, Pöhlmann J, Ackermann L. Angew. Chem. Int. Ed. 2023; 62: e2022166
  • 26 Schischko A, Ren H, Kaplaneris N, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 1576
    • 27a Brand JP, Charpentier J, Waser J. Angew. Chem. Int. Ed. 2009; 48: 9346
    • 27b Brand JP, Chevalley C, Scopelliti R, Waser J. Chem. Eur. J. 2012; 18: 5655
    • 27c Tolnai GL, Ganss S, Brand JP, Waser J. Org. Lett. 2013; 15: 112
    • 27d Brand JP, Li Y, Waser J. Isr. J. Chem. 2013; 53: 901
    • 27e Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2015; 54: 8876
    • 27f Abegg D, Frei R, Cerato L, Hari DP, Wang C, Waser J, Adibekian A. Angew. Chem. Int. Ed. 2015; 54: 10852
  • 28 Hansen MB, Hubálek F, Skrydstrup T, Hoeg-Jensen T. Chem. Eur. J. 2016; 22: 1572
  • 30 Lampkowski JS, Villa JK, Young TS, Young DD. Angew. Chem. Int. Ed. 2015; 54: 9343
    • 31a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 31b Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 31c Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
    • 31d Hong V, Presolski SI, Ma C, Finn MG. Angew. Chem. Int. Ed. 2009; 48: 9879
    • 31e Presolski SI, Hong VP, Finn MG. Curr. Protoc. Chem. Biol. 2011; 3: 153
  • 32 Ruan Z, Sauermann N, Manoni E, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 3172
    • 33a Yang Z, Cao J, He Y, Yang JH, Kim T, Peng X, Kim JS. Chem. Soc. Rev. 2014; 43: 4563
    • 33b Mendive-Tapia L, Zhao C, Akram AR, Preciado S, Albericio F, Lee M, Serrels A, Kielland N, Read ND, Lavilla R, Vendrell M. Nat. Commun. 2016; 7: 10940
    • 33c Mendive-Tapia L, Subiros-Funosas R, Zhao C, Albericio F, Read ND, Lavilla R, Vendrell M. Nat. Protoc. 2017; 12: 1588
    • 33d Fernandez A, Vermeren M, Humphries D, Subiros-Funosas R, Barth N, Campana L, MacKinnon A, Feng Y, Vendrell M. ACS Cent. Sci. 2017; 3: 995
    • 33e Patalag LJ, Ho LP, Jones PG, Werz DB. J. Am. Chem. Soc. 2017; 139: 15104
    • 33f Benson S, Fernandez A, Barth ND, de Moliner F, Horrocks MH, Herrington CS, Abad JL, Delgado A, Kelly L, Chang Z, Feng Y, Nishiura M, Hori Y, Kikuchi K, Vendrell M. Angew. Chem. Int. Ed. 2019; 58: 6911
    • 33g Fernandez A, Thompson EJ, Pollard JW, Kitamura T, Vendrell M. Angew. Chem. Int. Ed. 2019; 58: 16894
    • 33h Subiros-Funosas R, Ho VC. L, Barth ND, Mendive-Tapia L, Pappalardo M, Barril X, Ma R, Zhang C.-B, Qian B.-Z, Sintes M, Ghashghaei O, Lavilla R, Vendrell M. Chem. Sci. 2020; 11: 1368
  • 34 Kaplaneris N, Son J, Mendive-Tapia L, Kopp A, Barth ND, Maksso I, Vendrell M, Ackermann L. Nat. Commun. 2021; 12: 3389
  • 35 Kaplaneris N, Kaltenhäuser F, Sirvinskaite G, Fan S, De Oliveira T, Conradi L.-C, Ackermann L. Sci. Adv. 2021; 7: eabe6202
    • 36a Terrey MJ, Perry CC, Cross WB. Org. Lett. 2019; 21: 104
    • 36b Terrey MJ, Holmes A, Perry CC, Cross WB. Org. Lett. 2019; 21: 7902
    • 37a Ding HX, Leverett CA, Kyne RE. Jr, Liu KK.-C, Fink SJ, Flick AC, O’Donnell CJ. Bioorg. Med. Chem. 2015; 23: 1895
    • 37b Xie D, Yao C, Wang L, Min W, Xu J, Xiao J, Huang M, Chen B, Liu B, Li X, Jiang H. Antimicrob. Agents Chemother. 2010; 54: 191
    • 37c Cai WB, Zhang XZ, Wu Y, Chen XY. J. Nucl. Med. 2006; 46: 1172
  • 38 Peng J, Li C, Khamrakulov M, Wang J, Liu H. Org. Lett. 2020; 22: 1535
  • 39 Liu Q, Li Q, Ma Y, Jia Y. Org. Lett. 2013; 15: 4528
  • 40 Bai Z, Cai C, Sheng W, Ren Y, Wang H. Angew. Chem. Int. Ed. 2020; 59: 14686
  • 41 Kaplaneris N, Rogge T, Yin R, Wang H, Sirvinskaite G, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 3476
  • 42 Lorion MM, Kaplaneris N, Son J, Kuniyil R, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 1684
  • 43 Wang W, Subramanian P, Martinazzoli O, Wu J, Ackermann L. Chem. Eur. J. 2019; 25: 10585
  • 44 Schischko A, Kaplaneris N, Rogge T, Sirvinskaite G, Son J, Ackermann L. Nat. Commun. 2019; 10: 3553
    • 45a Qiu X, Deng H, Zhao Y, Shi Z. Sci. Adv. 2018; 4: eaau6468
    • 45b Dong B, Qian J, Li M, Wang Z.-J, Wang M, Wang D, Yuan C, Han Y, Zhao Y, Shi Z. Sci. Adv. 2020; 6: eabd1378
    • 45c Wang D, Chen X, Wong JJ, Jin L, Li M, Zhao Y, Houk KN, Shi Z. Nat. Commun. 2021; 12: 524
    • 45d Wang D, Li M, Chen X, Wang M, Liang Y, Zhao Y, Houk KN, Shi Z. Angew. Chem. Int. Ed. 2021; 60: 7066
  • 46 Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. Angew. Chem. Int. Ed. 2022; 61: e202206177

    • See reviews:
    • 47a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 47b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 47c Hagmann WK. J. Med. Chem. 2008; 51: 4359
  • 48 Ding B, Weng Y, Liu Y, Song C, Yin L, Yuan J, Ren Y, Lei A, Chiang C.-W. Eur. J. Org. Chem. 2019; 7596
  • 49 Ji Y, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
  • 50 Guerrero I, Correa A. Org. Lett. 2020; 22: 1754
  • 51 Chen H.-C, Wan C, Shih W.-H, Kao C.-Y, Jiang H, Weng Y, Chiang C.-W. Asian J. Org. Chem. 2022; 12: e202200647
  • 52 Stuckhardt C, Wissing M, Studer A. Angew. Chem. Int. Ed. 2021; 60: 18605
  • 53 Reimler J, Studer A. Chem. Eur. J. 2021; 27: 15392
  • 54 Zhang Q, Xie X, Peng J, Chen F, Ma J, Li C, Liu H, Wang D, Wang J. Org. Lett. 2021; 23: 4699
    • 55a Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 55b Sk MdR, Bera SS, Basuli S, Metya A, Maji MS. Asian J. Org. Chem. 2020; 9: 170
    • 55c Wang W, Wu J, Kuniyil R, Kopp A, Lima RN, Ackermann L. Chem 2020; 6: 3428
  • 56 Wen J, Zhu L.-L, Bi Q.-W, Shen Z.-Q, Li X.-X, Li X, Wang Z, Chen Z. Chem. Eur. J. 2014; 20 , 974
  • 57 Gu C.-X, Bi Q.-W, Gao C.-K, Wen J, Zhao Z.-G, Chen Z. Org. Biomol. Chem. 2017; 15: 3396
    • 58a Bogan AA, Thorn KS. J. Mol. Biol. 1998; 280: 1
    • 58b Bullock BN, Jochim AL, Arora PS. J. Am. Chem. Soc. 2011; 133: 14220
    • 58c Jones LH, Narayanan A, Hett EC. Mol. Biosyst. 2014; 10: 952
    • 60a San Segundo M, Correa A. Chem. Sci. 2020; 11: 11531
    • 60b Urruzuno I, Andrade-Sampedro P, Correa A. Org. Lett. 2021; 23: 7279
    • 60c Urruzuno I, Andrade-Sampedro P, Correa A. Eur. J. Org. Chem. 2023; 26: e202201489
    • 61a Huang C, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 12406
    • 61b Huang C, Ghavtadze N, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 17630
    • 61c Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2015; 54: 2255
    • 61d Parasram M, Gevorgyan V. Acc. Chem. Res. 2017; 50: 2038
  • 62 Hu Q.-L, Hou K.-Q, Li J, Ge Y, Song Z.-D, Chan AS. C, Xiong X.-F. Chem. Sci. 2020; 11: 6070
  • 63 Ichiishi N, Caldwell JP, Lin M, Zhong W, Zhu X, Streckfuss E, Kim HY, Parish CA, Krska SW. Chem. Sci. 2018; 9: 4168
  • 64 Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
  • 65 Fujiwara Y, Dixon JA, Ohara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herle B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature 2012; 492: 95
  • 66 Imiołek M, Karunanithy G, Ng WL, Baldwin AJ, Gouverneur V, Davis BG. J. Am. Chem. Soc. 2018; 140: 1568
  • 67 Kee CW, Tack O, Guibbal F, Wilson TC, Isenegger PG, Imiołek M, Verhoog S, Tilby M, Boscutti G, Ashworth S, Chupin J, Kashani R, Poh AW. J, Sosabowski JK, Macholl S, Plisson C, Cornelissen B, Willis MC, Passchier J, Davis BG, Gouverneur V. J. Am. Chem. Soc. 2020; 142: 1180
    • 68a Ban H, Gavrilyuk J, Barbas CF. J. Am. Chem. Soc. 2010; 132: 1523
    • 68b Long T, Liu L, Tao Y, Zhang W, Quan J, Zheng J, Hegemann JD, Uesugi M, Yao W, Tian H, Wang H. Angew. Chem. Int. Ed. 2021; 60: 13414
  • 69 Alvarez-Dorta D, Thobie-Gautier C, Croyal M, Bouzelha M, Mével M, Deniaud D, Boujtita M, Gouin SG. J. Am. Chem. Soc. 2018; 140: 17120
    • 70a Song C, Liu K, Wang Z, Ding B, Wang S, Weng Y, Chiang CW, Lei A. Chem. Sci. 2019; 10: 7982
    • 70b Stangier M, Messinis AM, Oliveira JC. A, Yu H, Ackermann L. Nat. Commun. 2021; 12: 4736
    • 70c Hou X, Kaplaneris N, Yuan B, Frey J, Ohyama T, Messinis AM, Ackermann L. Chem. Sci. 2022; 13: 3461
  • 71 Chakrabarty S, Wang Y, Perkins JC, Narayan AR. H. Chem. Soc. Rev. 2020; 49: 8137
    • 72a Solecka J, Rajnisz-Mateusiak A, Guspiel A, Jakubiec-Krzesniak K, Ziemska J, Kawęcki R, Kaczorek D, Gudanis D, Jarosz J, Wietrzyk J. J. Antibiot. 2018; 71: 757
    • 72b Larsson R, Blanco N, Johansson M, Sterner O. Tetrahedron Lett. 2012; 53: 4966
  • 73 Andrade-Sampedro P, Matxain JM, Correa A. Adv. Synth. Catal. 2022; 364: 2072
    • 74a White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
    • 74b Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214
  • 75 Wang P, Cheng Y, Wu C, Luo R, Ma C, Zhou Y, Ma Z, Wang R, Su W, Fang L. Chem. Commun. 2021; 57: 12968
  • 76 Wang P, Cheng Y, Wu C, Zhou Y, Cheng Z, Li H, Wang R, Su W, Fang L. Org. Lett. 2021; 23: 4137
  • 77 Duan J, Du YF, Pang X, Shu XZ. Chem. Sci. 2019; 10: 8706
  • 78 John AA, Ramil CP, Tian Y, Cheng G, Lin Q. Org. Lett. 2015; 17: 6258
  • 79 Chen TQ, MacMillan DW. C. Angew. Chem. Int. Ed. 2019; 58: 14584
  • 80 Guan H, Zhang Q, Walsh PJ, Mao J. Angew. Chem. Int. Ed. 2020; 59: 5172
  • 81 Chen H, Mao R, Brzozowski M, Nguyen NH, Sleebs BE. Org. Lett. 2021; 23: 4244
  • 82 Tilley JW, Sarabu R, Wagner R, Mulkerins K. J. Org. Chem. 1990; 55: 906
  • 83 Li P, Zhang M, Peach ML, Liu H, Yang D, Roller PP. Org. Lett. 2003; 5: 3095
    • 84a Hahm HS, Toroitich EK, Borne AL, Brulet JW, Libby AH, Yuan K, Ware TB, McCloud RL, Ciancone AM, Hsu KL. Nat. Chem. Biol. 2020; 16: 150
    • 84b Huang T, Hosseinibarkooie S, Borne AL, Granade ME, Brulet JW, Harris TE, Ferris HA, Hsu KL. Chem. Sci. 2021; 12: 3295
  • 85 Declas N, Maynard JR. J, Menin L, Gasilova N, Götze S, Sprague JL, Stallforth P, Matile S, Waser J. Chem. Sci. 2022; 13: 12808
    • 86a Tang J, He Y, Chen H, Sheng W, Wang H. Chem. Sci. 2017; 8: 4565
    • 86b Bai Z, Cai C, Yu Z, Wang H. Angew. Chem. Int. Ed. 2018; 57: 13912
    • 87a Li B, Li X, Han B, Chen Z, Zhang X, He G, Chen G. J. Am. Chem. Soc. 2019; 141: 9401
    • 87b Han B, Li B, Qi L, Yang P, He G, Chen G. Org. Lett. 2020; 22: 6879
    • 88a Liu S, Cai C, Bai Z, Sheng W, Tan J, Wang H. Org. Lett. 2021; 23: 2933
    • 88b Cai C, Wang F, Xiao X, Sheng W, Liu S, Chen J, Zheng J, Xie R, Bai Z, Wang H. Chem. Commun. 2022; 58: 4861
  • 89 Zheng Y, Song W, Zhu Y, Wei B, Xuan L. Org. Biomol. Chem. 2018; 16: 2402
  • 90 Zheng Y, Song W. Org. Lett. 2019; 21: 3257
  • 91 San Segundo M, Correa A. Chem. Sci. 2019; 10: 8872
    • 92a Koniev O, Wagner A. Chem. Soc. Rev. 2015; 44: 5495
    • 92b Boutureira O, Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
    • 92c Marmelstein AM, Lobba MJ, Mogilevsky CS, Maza JC, Brauer DD, Francis MB. J. Am. Chem. Soc. 2020; 142: 5078
  • 93 Noisier AF. M, Johansson MJ, Knerr L, Hayes MA, Drury WJ, Valeur E, Malins LR, Gopalakrishnan R. Angew. Chem. Int. Ed. 2019; 58: 19096
  • 94 Chen X, Ye F, Luo X, Liu X, Zhao J, Wang S, Zhou Q, Chen G, Wang P. J. Am. Chem. Soc. 2019; 141: 18230
  • 95 Bondalapati S, Jbara M, Brik A. Nat. Chem. 2016; 8: 407
  • 96 Spicer CD, Davis BG. Nat. Commun. 2014; 5: 4740
  • 97 Wan C, Wang Y, Lian C, Chang Q, An Y, Chen J, Sun J, Hou Z, Yang D, Guo X, Yin F, Wang R, Li Z. Chem. Sci. 2022; 13: 8289
  • 98 He Z, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 7813
  • 99 DeGruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863
    • 100a Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Nature 2018; 564: 244
    • 100b Kennedy SH, Dherange BD, Berger KJ, Levin MD. Nature 2021; 593: 223
    • 100c Han Y, Shi J, Li S, Dan T, Yang W, Yang M. Chem. Sci. 2022; 13: 14382
    • 100d Bartholomew GL, Carpaneto F, Sarpong R. J. Am. Chem. Soc. 2022; 144: 22309