Synlett 2023; 34(17): 1961-1977
DOI: 10.1055/a-2068-7126
account

Synthesis of Natural Products, Carbocycles, and Heterocycles by Hauser–Kraus Annulation

Chenikkayala Siva Sankara
,
Shweta Prakash Gaikwad
,
I.N.N.N. thanks SERB India for financial support for research in the area of Hauser-Kraus Chemistry.


Abstract

In this Account, we summarize recent developments in Hauser–Kraus (H–K) annulation with respect to syntheses of natural products and other functionalized, fused, or spiro carbocycles and heterocycles. Although the classical H–K annulation occurs between a 1,4-dipolar synthon (a 3-nucleophilic phthalide), and a 1,2-dipolar synthon (a Michael acceptor), alternative modes of annulation, such as [4+4] and [4+1], as well as other reactivities of 3-nucleophilic phthalides that have been reported in recent years, are also covered in this account.

1 Introduction

2 Hauser–Kraus Annulation in Total Syntheses

3 Hauser–Kraus Annulation Methodologies

3.1 [4+2] Annulation

3.2 [4+4] Annulation Followed by Rearrangement

3.3 Michael Addition Followed by E2 Elimination

4 Miscellaneous Reactions

5 Conclusions



Publication History

Received: 12 March 2023

Accepted after revision: 04 April 2023

Accepted Manuscript online:
04 April 2023

Article published online:
23 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Harvey RG. Curr. Org. Chem. 2004; 8: 303
  • 2 Snieckus V. Chem. Rev. 1990; 90: 879
  • 3 Dötz KH, Tomuschat P. Chem. Soc. Rev. 1999; 28: 187
  • 4 Serra S, Fuganti C, Brenna E. Chem. Eur. J. 2007; 13: 6782
  • 5 Kotha S, Misra S, Halder S. Tetrahedron 2008; 64: 10775
  • 6 Mal D, Pahari P. Chem. Rev. 2007; 107: 1892
    • 7a Hauser FM, Rhee RP. J. Org. Chem. 1978; 43: 178
    • 7b Kraus GA, Sugimoto H. Tetrahedron Lett. 1978; 19: 2263
    • 8a Dötz KH. Angew. Chem., Int. Ed. Engl. 1975; 14: 644
    • 8b Poudel TN, Tamargo RJ. I, Cai H, Lee YR. Asian J. Org. Chem. 2018; 7: 985
    • 8c Bera T, Pandey K, Ali R. ChemistrySelect 2020; 5: 5239
  • 9 Rathwell K, Brimble MA. Synthesis 2007; 643
    • 10a Mal D. Anionic Annulations in Organic Synthesis:A Versatile and Prolific Class of Ring-Forming Reactions. Elsevier; Amsterdam: 2019: 63
    • 10b de Koning CB, Georgiou KH, Michael JP, Rousseau AL. Org. React. (Hoboken, NJ U. S.) 2021; 107: 565
  • 11 Huang J.-K, Yang Lauderdale T.-L, Shia K.-S. Org. Lett. 2015; 17: 4248
    • 12a Hassan NP. S, Naysmith BJ, Sperry J, Brimble MA. Tetrahedron 2014; 71: 7137
    • 12b Tatsuta K, Ozeki H, Yamaguchi M, Tanaka M, Okui T. Tetrahedron Lett. 1990; 31: 5495
  • 13 Mal D, Roy HN. J. Chem. Soc., Perkin Trans. 1 1999; 3167
  • 14 Matsumoto T, Yamaguchi H, Tanabe M, Yasui Y, Suzuki K. Tetrahedron Lett. 2000; 41: 8393
  • 15 Kraus GA, Dong P. Nat. Prod. Commun. 2015; 10: 1025
  • 16 Ahn S, Han YT. Tetrahedron Lett. 2017; 58: 4779
  • 17 Hoffmann B, Lackner H. Liebigs Ann. Chem. 1995; 87
  • 18 Nomura K, Okazaki K, Horo K, Yoshii E. J. Am. Chem. Soc. 1987; 109: 3402
  • 19 Hosamani B, Ribeiro FM, da Silva EN. Jr, Namboothiri IN. N. Org. Biomol. Chem. 2016; 14: 6913
  • 20 Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
    • 21a Chae S.-H, Kim S.-I, Yeon S.-H, Lee S.-W, Ahn Y.-J. J. Agric. Food Chem. 2011; 59: 8193
    • 21b Palermo JA, Rodríguez Brasco MV, Spagnuolo C, Seldes AM. J. Org. Chem. 2000; 65: 4482
    • 21c Kameda K, Namiki M. Chem. Lett. 1974; 1491
    • 21d Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Sudarsono Sudarsono, Proksch P. J. Nat. Prod. 2002; 65: 730
    • 21e Puder C, Zeeck A, Beil W. J. Antibiot. 2000; 53: 329
    • 21f Fujiwara A, Mori T, Lida A, Ueda S, Hano Y, Nomura T, Tokuda H, Nishino H. J. Nat. Prod. 1998; 61: 629
    • 21g Fuska J, Uhrín D, Proksa B, Votický Z, Ruppeldt J. J. Antibiot. 1986; 39: 1605
    • 21h Forgacs P, Provost J, Touche A, Jehanno A. J. Nat. Prod. 1986; 49: 178
    • 21i Rücker G, Breitmaier E, Zhang G.-L, Mayer R. Phytochemistry 1994; 36: 519
    • 21j Wu Y.-R, Ma Y.-B, Zhao Y.-X, Yao S.-Y, Zhou Y, Chen J.-J. Planta Med. 2007; 73: 787
    • 21k Hochstein FA, Murai K, Boegemann WH. J. Am. Chem. Soc. 1995; 77: 3551
  • 22 Roy J, Mal T, Jana S, Mal D. Beilstein J. Org. Chem. 2016; 12: 531
  • 23 Chakraborty S, Mal D. J. Org. Chem. 2018; 83: 1328
  • 24 Holmbo SD, Pronin SV. J. Am. Chem. Soc. 2018; 140: 5065
  • 25 Wang S, Kraus GA. J. Org. Chem. 2018; 83: 15549
  • 26 Wang S, Kraus GA. J. Org. Chem. 2019; 84: 16329
  • 27 Wang S, Kraus GA. Synthesis 2020; 52: 2821
  • 28 Kitamura K, Kanagawa H, Ozakai C, Nishimura T, Tokuda H, Tsunoda T, Kaku H. Synthesis 2021; 53: 1629
  • 29 Kumar T, Mane V, Namboothiri IN. N. Org. Lett. 2017; 19: 4283
  • 30 Lokesh K, Kesavan V. Eur. J. Org. Chem. 2017; 5689
  • 31 Sivasankara C, Satham L, Namboothiri IN. N. J. Org. Chem. 2017; 82: 12939
  • 32 Basu P, Satam N, Pati S, Suresh A, Namboothiri IN. N. J. Org. Chem. 2023; 88: 4038
  • 33 Raja Sk M, Chakraborty S, Mal D. Synth. Commun. 2018; 48: 309
  • 34 Wood MJ, Satam NS, Almeida RG, Cristani VS, de Lima DP, Dantas-Pereira L, Salomao K, Menna-Barreto RF. S, Namboothiri IN. N, Bower JF, da Silva EN. Jr. Bioorg. Med. Chem. 2020; 28: 115565
  • 35 Kumar T, Satam N, Namboothiri IN. N. Eur. J. Org. Chem. 2016; 3316
  • 36 Suresh A, Baiju TV, Kumar T, Namboothiri IN. N. J. Org. Chem. 2019; 84: 3158
  • 37 Basu P, Satam N, Namboothiri IN. N. Org. Biomol. Chem. 2020; 18: 5677
  • 38 Nair D, Basu P, Pati S, Baseshankar K, Sankara CS, Namboothiri IN. N. J. Org. Chem. 2023; 88: 4519
  • 39 Satam N, Basu P, Pati S, Namboothiri IN. N. Eur. J. Org. Chem. 2021; 3472
  • 40 Satham L, Suresh A, Namboothiri IN. N. Asian J. Org. Chem. 2021; 10: 1102
  • 41 Gond KK, Maddani MR. Org. Biomol. Chem. 2023; 21: 2504
  • 42 Xu S.-Y, Zhang R, Zhang S.-S, Feng C.-G. Org. Biomol. Chem. 2021; 19: 4492
  • 43 Sharique M, Tambar UK. Chem. Sci. 2020; 11: 7239
  • 44 Sorabad GS, Yang D.-Y. Org. Lett. 2023; 25: 2515