Synthesis 2023; 55(21): 3454-3469
DOI: 10.1055/a-2058-0695
special topic
C–H Bond Functionalization of Heterocycles

Transition-Metal-Catalyzed Directed C8–H Carbon–Carbon Bond Formation in Quinolines and 1,2,3,4-Tetrahydroquinolines

Shubhajit Basak
,
Tripti Paul
,
Santu Mandal
,
Pallab Karjee
,
Maniya Vadakanamala Nanjegowda
,
Tharmalingam Punniyamurthy
S.B. and S.M. thank Department of Science and Technology, Ministry of Science and Technology, India, for INSPIRE Senior Research Fellowship. T. Paul and M.V.N. are thankful to the Ministry of Education, India, for a Prime Minister’s Research Fellowship (PMRF). P.K. acknowledges the Ministry of Education, India, for a Senior Research Fellowship.


Abstract

C8-Substituted quinoline (QN) and 1,2,3,4-tetrahydroquinoline (THQ) scaffolds are featured in numerous bioactive compounds and natural products. Appreciable efforts have been made towards the development of elegant techniques to functionalize the C8–H bond of QNs and THQs. The transition-metal-catalyzed chelation-assisted C–H activation strategy has emerged as an effective synthetic tool among existing methods. This review focuses on recent advances in transition-metal-catalyzed directed carbon–carbon bond forming reactions for the C8–H functionalization of QNs and THQs (till February 2023). The discussion has been categorized based on the type of reaction.

1 Introduction

2 Acylation

3 Alkylation

4 Alkenylation

5 Alkynylation

6 Allylation

7 Annulation

8 Arylation

9 Conclusion and Outlook



Publication History

Received: 28 February 2023

Accepted after revision: 20 March 2023

Accepted Manuscript online:
20 March 2023

Article published online:
25 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Katritzky AR, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
    • 1b Chung P.-Y, Bian Z.-X, Pun H.-Y, Chan D, Chan AS.-C, Chui C.-H, Tang JC.-O, Lam K.-H. Future Med. Chem. 2015; 7: 947
    • 2a Bawa S, Kumar S, Drabu S, Kumar R. J. Pharm. Bioallied Sci. 2010; 2: 64
    • 2b Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
    • 2c Musiol R. Expert Opin. Drug Discovery 2017; 12: 583
    • 2d Varejão JO. S, Varejão EV. V, Fernandes SA. Eur. J. Org. Chem. 2019; 2019: 4273
    • 3a Chen CH, Shi J. Coord. Chem. Rev. 1998; 171: 161
    • 3b Consorti CS, Ebeling G, Rodembusch F, Stefani V, Livotto PR, Rominger F, Quina FH, Yihwa C, Dupont J. Inorg. Chem. 2004; 43: 530
    • 4a Bharate JB, Vishwakarma RA, Bharate SB. RSC Adv. 2015; 5: 42020
    • 4b Sharma R, Kour P, Kumar A. J. Chem. Sci. 2018; 130: 73
    • 5a Gros PC, Fort Y. Eur. J. Org. Chem. 2002; 2002: 3375
    • 5b Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
    • 5c Haag B, Mosrin M, Ila H, Malakhov V, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
    • 6a Engle KM, Mei TS, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 6b Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 6c Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 6d Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 6e Pradhan S, De PB, Shah TA, Punniyamurthy T. Chem. Asian J. 2020; 15: 4184
    • 6f Basak S, Paul T, Maharana PK, Debnath B, Punniyamurthy T. Synlett 2023; 34: 759
    • 7a Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254
    • 7b Larionov OV, Stephens D, Mfuh A, Chavez G. Org. Lett. 2014; 16: 864
    • 7c Wang D, Désaubry L, Li G, Huang M, Zheng S. Adv. Synth. Catal. 2021; 363: 2
    • 8a Okamoto T, Kobayashi T, Yoshida S. Med. Chem. 2007; 3: 35
    • 8b Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Kiselyov AS, Stewart LJ, Gurney ME. Nat. Biotechnol. 2010; 28: 63
    • 8c Koçyiğit ÜM, Ökten S, Çakmak O, Burhan G, Ataş M, Taslimi P, Gülçin İ. ChemistrySelect 2022; 7: e202203469
    • 9a Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
    • 9b da Silva Júnior EN, Jardim GA. M, Gomes RS, Liang Y.-F, Ackermann L. Chem. Commun. 2018; 54: 7398
    • 9c Prabagar B, Yang Y, Shi Z. Chem. Soc. Rev. 2021; 50: 11249
    • 9d Corio A, Gravier-Pelletier C, Busca P. Molecules 2021; 26: 5467
  • 10 Mohamed MF. A, Abuo-Rahma GE.-D. A. RSC Adv. 2020; 10: 31139
  • 11 Shin Y, Sharma S, Mishra NK, Han S, Park J, Oh H, Ha J, Yoo H, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 594
  • 12 Chen X, Cui X, Wu Y. Org. Lett. 2016; 18: 2411
  • 13 Chen X, Cui X, Wu Y. Org. Lett. 2016; 18: 3722
  • 14 Han L, Wang Y, Song H, Han H, Wang L, Chu W, Sun Z. RSC Adv. 2016; 6: 20637
  • 15 Li G.-H, Dong D.-Q, Yu X.-Y, Wang Z.-L. New J. Chem. 2019; 43: 1667
  • 16 Xie G, Zhao Y, Cai C, Deng G.-J, Gong H. Org. Lett. 2021; 23: 410
  • 17 Neufeldt SR, Seigerman CK, Sanford MS. Org. Lett. 2013; 15: 2302
  • 18 Jeong J, Patel P, Hwang H, Chang S. Org. Lett. 2014; 16: 4598
  • 19 Fernández DF, Mascareñas JL, López F. Chem. Soc. Rev. 2020; 49: 7378
  • 20 Zhang X, Qi Z, Li X. Angew. Chem. Int. Ed. 2014; 53: 10794
  • 21 Sharma U, Park Y, Chang S. J. Org. Chem. 2014; 79: 9899
  • 22 Kalsi D, Laskar RA, Barsu N, Premkumar JR, Sundararaju B. Org. Lett. 2016; 18: 4198
  • 23 Lukasevics L, Cizikovs A, Grigorjeva L. Chem. Commun. 2021; 57: 10827
  • 24 Barsu N, Sen M, Premkumar JR, Sundararaju B. Chem. Commun. 2016; 52: 1338
  • 25 Oh H, Park J, Han SH, Mishra NK, Lee SH, Oh Y, Jeon M, Seong G.-J, Chung KY, Kim IS. Tetrahedron 2017; 73: 4739
  • 26 Sharma R, Kumar I, Kumar R, Sharma U. Adv. Synth. Catal. 2017; 359: 3022
  • 27 Li D.-Y, Huang Z.-L, Liu P.-N. Org. Lett. 2018; 20: 2028
  • 28 You C, Pi C, Wu Y, Cui X. Adv. Synth. Catal. 2018; 360: 4068
  • 29 Sharma R, Kumar R, Kumar R, Upadhyay P, Sahal D, Sharma U. J. Org. Chem. 2018; 83: 12702
  • 30 Thakur A, Dhiman AK, Sumit, Kumar R, Sharma U. J. Org. Chem. 2021; 86: 6612
  • 31 An W, Lee SH, Kim D, Oh H, Kim S, Byun Y, Kim HJ, Mishra NK, Kim IS. J. Org. Chem. 2021; 86: 7579
  • 32 Kato M, Ghosh K, Nishii Y, Miura M. Chem. Commun. 2021; 57: 8280
  • 33 Liu M, Yan K, Wen J, Shang W, Sui X, Wang X. Adv. Synth. Catal. 2022; 364: 1580
  • 34 Ahmad A, Dutta HS, Kumar M, Raziullah, Gangwar MK, Koley D. Org. Lett. 2022; 24: 2783
  • 35 Paul T, Basak S, Punniyamurthy T. Org. Lett. 2022; 24: 6000
  • 36 Parmar D, Dhiman AK, Kumar R, Sharma AK, Sharma U. J. Org. Chem. 2022; 87: 9069
  • 37 Byun Y, Moon K, Park J, Ghosh P, Mishra NK, Kim IS. Org. Lett. 2022; 24: 8578
    • 38a Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 38b Zhou Y, Wang J, Gu ZN, Wang SN, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
  • 39 Ko N, Min J, Moon J, Ismail NF, Moon K, Singh P, Mishra NK, Lee W, Kim IS. J. Org. Chem. 2023; 88: 602
  • 40 Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
  • 41 Jin W, Yu Z, He W, Ye W, Xiao W.-J. Org. Lett. 2009; 11: 1317
  • 42 Shibata T, Matsuo Y. Adv. Synth. Catal. 2014; 356: 1516
  • 43 Sharma R, Kumar R, Kumar I, Sharma U. Eur. J. Org. Chem. 2015; 2015: 7519
  • 44 Zhang L, Chen C, Han J, Huang Z.-B, Zhao Y. Org. Chem. Front. 2016; 3: 1271
  • 45 Sharma R, Kumar R, Sharma U. J. Org. Chem. 2019; 84: 2786
  • 47 Shukla RK, Nair AM, Khan S, Volla CM. R. Angew. Chem. Int. Ed. 2020; 59: 17042
  • 48 Raziullah, Kumar M, Khan AA, Dutta HS, Ahmad A, Vaishnav J, Kant R, Ampapathi RS, Koley D. Eur. J. Org. Chem. 2021; 2021: 2107
  • 49 Wang D, Xu X, Zhang J, Zhao Y. J. Org. Chem. 2021; 86: 2696
  • 50 Tóth BL, Sályi G, Domján A, Egyed O, Bényei A, Gonda Z, Novák Z. Adv. Synth. Catal. 2022; 364: 348
    • 51a Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
    • 51b Dutta S, Bhattacharya T, Werz DB, Maiti D. Chem 2021; 7: 555
  • 52 Wang Q, Shi L, Liu S, Zhi C, Fu L.-R, Zhu X, Hao X.-Q, Song M.-P. RSC Adv. 2020; 10: 10883
  • 53 Mandal S, Karjee P, Saha S, Punniyamurthy T. Chem. Commun. 2023; 59: 2823
  • 54 Wang C, Qiao J, Liu X, Song H, Sun Z, Chu W. J. Org. Chem. 2018; 83: 1422
  • 55 Banerjee S, Kumar SV, Punniyamurthy T. J. Org. Chem. 2020; 85: 2793
    • 56a Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 56b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 57a Macdonald D, Perrier H, Liu S, Laliberté F, Rasori R, Robichaud A, Masson P, Huang Z. J. Med. Chem. 2000; 43: 3820
    • 57b Rossiter S, Péron J.-M, Whitfield PJ, Jones K. Bioorg. Med. Chem. Lett. 2005; 15: 4806
  • 58 Shi Z, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y. Angew. Chem. Int. Ed. 2007; 46: 5554
  • 59 Li B.-J, Tian S.-L, Fang Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1115
  • 60 Kwak J, Kim M, Chang S. J. Am. Chem. Soc. 2011; 133: 3780
  • 61 Jiang Z, Zhang L, Dong C, Su X, Li H, Tang W, Xu L, Fan Q. RSC Adv. 2013; 3: 1025
  • 62 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 63 Yang F, Song F, Li W, Lan J, You J. RSC Adv. 2013; 3: 9649
  • 64 Stephens DE, Lakey-Beitia J, Atesin AC, Atesin TA, Chavez G, Arman HD, Larionov OV. ACS Catal. 2015; 5: 167
  • 65 Stephens DE, Lakey-Beitia J, Chavez G, Ilie C, Armana HD, Larionov OV. Chem. Commun. 2015; 51: 9507
  • 66 Shin K, Park S.-W, Chang S. J. Am. Chem. Soc. 2015; 137: 8584
  • 67 Sahoo MK, Midya SP, Landgea VG, Balaraman E. Green Chem. 2017; 19: 2111
  • 68 Ghosh B, Biswas A, Chakraborty S, Samanta R. Chem. Asian J. 2018; 13: 2388
  • 69 Luo H, Xie Q, Sun K, Deng J, Xu L, Wang K, Luo X. RSC Adv. 2019; 9: 18191
  • 70 Kim J, Kim S, Kim D, Chang S. J. Org. Chem. 2019; 84: 13150
  • 71 Gupta SS, Kumar R, Sharma U. ACS Omega 2020; 5: 904
  • 72 Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
  • 73 Bellotti P, Huang H.-M, Faber T, Glorius F. Chem. Rev. 2023; in press DOI: 10.1021/acs.chemrev.2c00478.