Synthesis 2023; 55(05): 733-743
DOI: 10.1055/a-2004-0951
feature

Synthesis of 1,1-Disubstituted Allenylic Silyl Ethers through Iron-Catalyzed Regioselective C(sp2)–H Functionalization of Allenes

a   Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
,
Yidong Wang
a   Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
b   School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. of China
,
Yi-Ming Wang
a   Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
› Author Affiliations
This work was funded by the National Institute of General Medical Sciences (R35GM142945).


Abstract

We report a synthesis of allenylic silyl ethers through iron-catalyzed functionalization of the C(sp2)–H bonds of monosubstituted alkylallenes. In the presence of a cyclopentadienyliron dicarbonyl based catalyst and triisopropylsilyl triflate as a silylation agent, a variety of aryl aldehydes were suitable coupling partners in this transformation, furnishing a collection of 1,1-disubstituted allenylic triisopropylsilyl ethers as products in moderate to excellent yields as a single regioisomer. Lithium bistriflimide was identified as a critical additive in this transformation. The optimized protocol was scalable, and the products were amenable to further transformation to give a number of unsaturated, polyfunctional derivatives.

Supporting Information



Publication History

Received: 01 December 2022

Accepted: 26 December 2022

Accepted Manuscript online:
26 December 2022

Article published online:
02 February 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
    • 2b Zhang Y.-A, Yaw N, Snyder SA. J. Am. Chem. Soc. 2019; 141: 7776
    • 2c Xu D, Drahl MA, Williams LJ. Beilstein J. Org. Chem. 2011; 7: 937
    • 2d Rivera-Fuentes P, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818
    • 2e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
    • 2f Chu W.-D, Zhang Y, Wang J. Catal. Sci. Technol. 2017; 7: 4570
  • 3 Shimizu I, Sugiura T, Tsuji J. J. Org. Chem. 1985; 50: 537
    • 4a Krause N, Winter C. Chem. Rev. 2011; 111: 1994
    • 4b Zhu C, Liu J, Mai BK, Himo F, Bäckvall J.-E. J. Am. Chem. Soc. 2020; 142: 5751
    • 4c Li M.-B, Posevins D, Geoffroy A, Zhu C, Bäckvall J.-E. Angew. Chem. Int. Ed. 2020; 59: 1992
    • 4d Guo H, Xu Q, Kwon O. J. Am. Chem. Soc. 2009; 131: 6318
    • 5a Ma S, Zhao S. J. Am. Chem. Soc. 1999; 121: 7943
    • 5b Kang S.-K, Yamaguchi T, Pyun S.-J, Lee Y.-T, Baik T.-G. Tetrahedron Lett. 1998; 39: 2127
    • 6a Furuichi N, Hara H, Osaki T, Mori H, Katsumura S. Angew. Chem. Int. Ed. 2002; 41: 1023
    • 6b Furuichi N, Hara H, Osaki T, Nakano M, Mori H, Katsumura S. J. Org. Chem. 2004; 69: 7949
  • 7 Sun T, Deutsch C, Krause N. Org. Biomol. Chem. 2012; 10: 5965
  • 8 VanBrunt MP, Standaert RF. Org. Lett. 2000; 2: 705
  • 9 Deska J, Bäckvall J.-E. Org. Biomol. Chem. 2009; 7: 3379
    • 10a Huang X, Ma S. Acc. Chem. Res. 2019; 52: 1301
    • 10b Crabbé P, Nassim B, Robert-Lopes M.-T. Org. Synth. 1985; 63: 203
    • 10c Crabbé P, Fillion H, André D, Luche J.-L. J. Chem. Soc., Chem. Commun. 1979; 859
    • 10d Kuang J, Ma S. J. Org. Chem. 2009; 74: 1763
    • 11a Yin SH, Ma SM, Jiao N, Tao FG. Chin. J. Chem. 2002; 20: 707
    • 11b Maurin R, Bertrand M. Bull. Soc. Chim. Fr. 1972; 2349
    • 11c Buono G. Tetrahedron Lett. 1972; 3257
  • 13 Reuter JM, Salomon RG. Tetrahedron Lett. 1978; 3199
  • 14 Tang X, Woodward S, Krause N. Eur. J. Org. Chem. 2009; 2836
  • 15 Kurono N, Sugita K, Tokuda M. Tetrahedron 2000; 56: 847
  • 16 Honda M, Nishizawa T, Nishii Y, Fujinami S, Segi M. Tetrahedron 2009; 65: 9403
    • 17a Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Chem. Commun. 2020; 56: 1393
    • 17b Wang S.-G, Liu Y, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 18136
    • 17c Meyer TH, Oliveira JC. A, Sau SC, Ang NW. J, Ackermann L. ACS Catal. 2018; 8: 9140
    • 17d Mo J, Müller T, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 7719
    • 17e Li T, Zhang C, Tan Y, Pan W, Rao Y. Org. Chem. Front. 2017; 4: 204
    • 17f Thrimurtulu N, Nallagonda R, Volla CM. R. Chem. Commun. 2017; 53: 1872
    • 18a Boobalan R, Santhoshkumar R, Cheng C.-H. Adv. Synth. Catal. 2019; 361: 1140
    • 18b Liu Y, Che C.-M. Chem. Eur. J. 2010; 16: 10494
    • 19a Li S, Tang Z, Wang Y, Wang D, Wang Z, Yu C, Li T, Wei D, Yao C. Org. Lett. 2019; 21: 1306
    • 19b Tsuboi S, Kuroda H, Takatsuka S, Fukawa T, Sakai T, Utaka M. J. Org. Chem. 1993; 58: 5952
    • 19c Kondo M, Omori M, Hatanaka T, Funahashi Y, Nakamura S. Angew. Chem. Int. Ed. 2017; 56: 8677
    • 19d Mbofana CT, Miller SJ. J. Am. Chem. Soc. 2014; 136: 3285
    • 19e Hashimoto T, Sakata K, Tamakuni F, Dutton MJ, Maruoka K. Nat. Chem. 2013; 5: 240
    • 19f Cowen BJ, Saunders LB, Miller SJ. J. Am. Chem. Soc. 2009; 131: 6105
  • 21 Schreib BS, Son M, Aouane FA, Baik MH, Carreira EM. J. Am. Chem. Soc. 2021; 143: 21705
  • 22 Wang G, Liu X, Chen Y, Yang J, Li J, Lin L, Feng X. ACS Catal. 2016; 6: 2482
    • 23a Wang Y, Scrivener SG, Zuo X.-D, Wang R, Palermo PN, Murphy E, Durham AC, Wang Y.-M. J. Am. Chem. Soc. 2021; 143: 14998
    • 23b Xia Y, Wade NW, Palermo PN, Wang Y, Wang Y.-M. Chem. Commun. 2021; 57: 13329
    • 23c Wang Y, Zhu J, Durham AC, Lindberg H, Wang Y.-M. J. Am. Chem. Soc. 2019; 141: 19594
    • 23d Durham AC, Wang Y, Wang Y.-M. Synlett 2020; 31: 1747
  • 24 Zhu J, Durham AC, Wang Y, Corcoran JC, Zuo X.-D, Geib SJ, Wang Y.-M. Organometallics 2021; 40: 2295
  • 25 Wigman B, Popov S, Bagdasarian AL, Shao B, Benton TR, Williams CG, Fisher SP, Lavallo V, Houk KN, Nelson HM. J. Am. Chem. Soc. 2019; 141: 9140
  • 26 Nagashima Y, Sasaki K, Suto T, Sato T, Chida N. Chem. Asian J. 2018; 13: 1024
  • 27 Asako S, Ishikawa S, Takai K. ACS Catal. 2016; 6: 3387
  • 28 Hoffmann-Röder A, Krause N. Org. Lett. 2001; 3: 2537
  • 29 Li J, Kong W, Yu Y, Fu C, Ma S. J. Org. Chem. 2009; 74: 8733