Synthesis 2023; 55(09): 1367-1374
DOI: 10.1055/a-1979-5933
special topic
Bürgenstock Special Section 2022 – Future Stars in Organic Chemistry

Photocatalytic Cleavage of Trityl Protected Thiols and Alcohols

Sho Murakami
a   Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
b   Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
,
Cosima Brudy
a   Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
,
Moritz Bachmann
a   Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
,
Yoshiji Takemoto
b   Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
,
a   Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
› Institutsangaben
We gratefully acknowledge the Max-Planck Society for generous financial support. S.M. acknowledges a Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows and the Japan Society for the Promotion of Science (JSPS) for funding through the Overseas Challenge Program for Young Researchers. B.P. thanks the Boehringer Ingelheim Foundation for funding through the Plus 3 Perspectives Programme.


Abstract

We report the visible light photocatalytic cleavage of trityl thioethers or ethers under pH-neutral conditions. The method results in the formation of the respective symmetrical disulfides and alcohols in moderate to excellent yield. The protocol only requires the addition of a suitable photocatalyst and light rendering it orthogonal to several functionalities, including acid labile protective groups. The same conditions can be used to directly convert trityl-protected thiols into unsymmetrical disulfides or selenosulfides, and to cleave trityl resins in solid phase organic synthesis.

Supporting Information



Publikationsverlauf

Eingereicht: 19. Oktober 2022

Angenommen nach Revision: 15. November 2022

Accepted Manuscript online:
15. November 2022

Artikel online veröffentlicht:
07. Dezember 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
  • 2 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 3 Reischauer S, Pieber B. iScience 2021; 24: 102209
  • 4 Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
  • 5 Gant Kanegusuku AL, Roizen JL. Angew. Chem. Int. Ed. 2021; 60: 21116
  • 6 Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
  • 7 Cavedon C, Seeberger PH, Pieber B. Eur. J. Org. Chem. 2019; 2020: 1379
  • 8 Oh S, Stache EE. J. Am. Chem. Soc. 2022; 144: 5745
  • 9 Zhang J. ChemSusChem 2018; 11: 3071
  • 10 Lanzi M, Merad J, Boyarskaya DV, Maestri G, Allain C, Masson G. Org. Lett. 2018; 20: 5247
  • 11 Epling GA, Wang Q. Tetrahedron Lett. 1992; 33: 5909
  • 12 Dharpure PD, Bhowmick A, Warghude PK, Bhat RG. Tetrahedron Lett. 2020; 61: 151407
  • 13 Kamata M, Kato Y, Hasegawa E. Tetrahedron Lett. 1991; 32: 4349
  • 14 Krumb M, Kammer LM, Forster R, Grundke C, Opatz T. ChemPhotoChem 2020; 4: 101
  • 15 Tucker JW, Narayanam JM. R, Shah PS, Stephenson CR. J. Chem. Commun. 2011; 47: 5040
  • 16 Liu Z, Zhang Y, Cai Z, Sun H, Cheng X. Adv. Synth. Catal. 2015; 357: 589
  • 17 Ahn DK, Kang YW, Woo SK. J. Org. Chem. 2019; 84: 3612
  • 18 Lechner R, König B. Synthesis 2010; 1712
  • 19 Cavedon C, Sletten ET, Madani A, Niemeyer O, Seeberger PH, Pieber B. Org. Lett. 2021; 23: 514
  • 20 Konrad DB, Rühmann K.-P, Ando H, Hetzler BE, Strassner N, Houk KN, Matsuura BS, Trauner D. Science 2022; 377: 411
  • 21 Nicolaou KC, Pan S, Shelke Y, Rigol S, Bao R, Das D, Ye Q. Proc. Natl. Acad. Sci. U. S. A. 2022; 119: e2208938119
  • 22 Wuts PG, Greene TW. Greene's Protective Groups in Organic Synthesis, 4th ed. Wiley; Hoboken: 2006
  • 23 Shchepinov MS, Korshun VA. Chem. Soc. Rev. 2003; 32: 170
  • 24 Horn M, Mayr H. J. Phys. Org. Chem. 2012; 25: 979
  • 25 Jin J, MacMillan DW. C. Nature 2015; 525: 87
  • 26 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 27 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 28 Talla A, Driessen B, Straathof NJ. W, Milroy L.-G, Brunsveld L, Hessel V, Noël T. Adv. Synth. Catal. 2015; 357: 2180
  • 29 Bottecchia C, Erdmann N, Tijssen PM. A, Milroy L.-G, Brunsveld L, Hessel V, Noël T. ChemSusChem 2016; 9: 1781
  • 30 Dethe DH, Srivastava A, Dherange BD, Kumar BV. Adv. Synth. Catal. 2018; 360: 3020
  • 31 Mikkelsen RJ. T, Grier KE, Mortensen KT, Nielsen TE, Qvortrup K. ACS Comb. Sci. 2018; 20: 377
  • 32 James IW. Tetrahedron 1999; 55: 4855
  • 33 Guillier F, Orain D, Bradley M. Chem. Rev. 2000; 100: 2091
  • 34 Oka M, Kozako R, Iida H. Synlett 2021; 32: 1227
  • 35 He W, Ding Y, Tu J, Que C, Yang Z, Xu J. Org. Biomol. Chem. 2018; 16: 1659
  • 36 Oba M, Tanaka K, Nishiyama K, Ando W. J. Org. Chem. 2011; 76: 4173
  • 37 West CW, Estiarte MA, Rich DH. Org. Lett. 2001; 3: 1205
  • 38 Goodrow MH, Musker WK. Synthesis 1981; 6: 457
  • 39 Sakai N, Moriya T, Konakahara T. J. Org. Chem. 2007; 72: 5920
  • 40 Reich HJ, Goldenberg WS, Sanders AW, Jantzi KL, Tzschucke CC. J. Am. Chem. Soc. 2003; 125: 3509
  • 41 Miyamoto K, Tada N, Ochiai M. J. Am. Chem. Soc. 2007; 129: 2772
  • 42 Li Z, Baker DL, Tigyi G, Bittman R. J. Org. Chem. 2006; 71: 629
  • 43 Saburi H, Tanaka S, Kitamura M. Angew. Chem. Int. Ed. 2005; 44: 1730
  • 44 Miao X, Fischmeister C, Bruneau C, Dixneuf PH. ChemSusChem 2009; 2: 542
  • 45 Zajdel P, Nomezine G, Masurier N, Amblard M, Pawłowski M, Martinez J, Subra G. Chem. Eur. J. 2010; 16: 7547
  • 46 Pedatella S, Guaragna A, D’Alonzo D, De Nisco M, Palumbo G. Synthesis 2006; 305
  • 47 Shaikh NS, Junge K, Beller M. Org. Lett. 2007; 9: 5429
  • 48 Zou J, Chen J, Shi T, Hou Y, Cao F, Wang Y, Wang X, Jia Z, Zhao Q, Wang Z. ACS Catal. 2019; 9: 11426