Synthesis 2023; 55(03): 433-442
DOI: 10.1055/a-1966-3271
feature

A Neutral FeCl3 Photocatalysis for C–C Bond Animation and Alkylation of Cyclic Alcohols

Zongnan Zhang
a   School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. of China
,
Ting Xue
a   School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. of China
,
Zhe Han
b   School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. of China
,
Rong Zeng
a   School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. of China
c   Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. of China
› Author Affiliations
The project described was supported by the National Natural Science Foundation of China (21901197) and Guangdong Provincial Key Laboratory of Catalysis (2020B121201002).


Abstract

A modified method for iron-catalyzed C–C bond cleavage and amination and alkylation of nonactivated cyclic alcohols has been developed. Using FeCl3 as catalyst, the photoinduced ligand-to-metal charge transfer facilitates the generation of O-radicals from alcohols, the subsequent β-scission, and finally the radical trapping. Compared with the Fe(OR)3 catalysis, this mildly base-free system could enable the amination in a broader substrate scope with higher yields. Moreover, the C–C bond cleavage and alkylation of cyclic alcohols proceeds with electron-deficient olefins under these conditions.

Supporting Information



Publication History

Received: 16 September 2022

Accepted after revision: 24 October 2022

Accepted Manuscript online:
24 October 2022

Article published online:
24 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Jia K, Chen Y. Chem. Commun. 2018; 54: 6105
    • 1b Wu X, Zhu C. Chem. Rev. 2018; 18: 587
    • 1c Schaafsma SE, Steinberg H, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1966; 85: 70
    • 1d Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
    • 1e Wu X, Zhu C. Chin. J. Chem. 2019; 37: 171
    • 1f Wu X, Zhu C. Chem. Commun. 2019; 55: 9747
    • 1g Wu X, Zhu C. CCS Chem. 2020; 2: 813
    • 1h Jiang H, Studer A. CCS Chem. 2019; 1: 38
    • 1i Tsui E, Wang H, Knowles RR. Chem. Sci. 2020; 11: 11124
    • 1j Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
    • 1k McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3

      For reviews on photocatalysis, see:
    • 2a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 2b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 2c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 2d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2e Chen Y, Lu L.-Q, Yu D.-G, Zhu C.-J, Xiao W.-J. Sci. China Chem. 2019; 62: 24
    • 3a Shilov A, Shul’pin GB. Homogeneous Catalytic Oxidation of Hydrocarbons by Molecular Oxygen. In Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Vol 21. Springer; Dordrecht: 2002
    • 3b Hwang SJ, Powers DC, Maher AG, Anderson BL, Hadt RG, Zheng S.-L, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2015; 137: 6472
    • 3c Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 3d Ackerman LK. G, Alvarado JI. M, Doyle AG. J. Am. Chem. Soc. 2018; 140: 14059
    • 3e Deng H.-P, Fan X.-Z, Chen Z.-H, Xu Q.-H, Wu J. J. Am. Chem. Soc. 2017; 139: 13579
    • 3f Deng H.-P, Zhou Q, Wu J. Angew. Chem. Int. Ed. 2018; 57: 12661
    • 3g Yang L, Lu H.-H, Lai C.-H, Li G, Zhang W, Cao R, Liu F, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2020; 59: 12714
    • 4a Guo J.-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
    • 4b Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612
    • 4c Hu A, Guo J.-J, Pan H, Zuo Z. Science 2018; 361: 668
    • 4d Wang Y, He J, Zhang Y. CCS Chem. 2020; 2: 107
    • 4e Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
    • 4f Zhang X, Zeng R. Org. Chem. Front. 2022; 9: 4955
    • 4g For a recent report on Cl radical, see: Yang Q, Walsh PJ, Schelter EJ. Science 2021; 372: 847
    • 5a Zhang Z, Zhang G, Xiong N, Xue T, Zhang J, Bai L, Guo Q, Zeng R. Org. Lett. 2021; 23: 2915
    • 5b Zhang G, Zhang Z, Zeng R. Chin. J. Chem. 2021; 39: 3225
    • 5c Xiong N, Li Y, Zeng R. Org. Lett. 2021; 23: 8968
    • 5d Xue T, Zhang Z, Zeng R. Org. Lett. 2022; 24: 977
    • 5e Wang K, Zeng R. Org. Chem. Front. 2022; 9: 3692
    • 5f Carceller E, Garcaía ML, Serratosa F, Font-Altaba M, Solans X. Tetrahedron 1987; 43: 2147

      For reports on visible-light-driven iron catalysis, see:
    • 7a Castro LC. M, Bézier D, Sortais J.-B, Darcel C. Adv. Synth. Catal. 2011; 353: 1279
    • 7b Ye J.-H, Miao M, Huang H, Yan S.-S, Yin Z.-B, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15416
    • 7c Li S, Zhu B, Lee R, Qiao B, Jiang Z. Org. Chem. Front. 2018; 5: 380
    • 7d Wei X.-J, Abdiaj I, Sambiagio C, Li C, Zysman-Colman E, Alcázar J, Noël T. Angew. Chem. Int. Ed. 2019; 58: 13030
    • 7e Li Z, Wang X, Xia S, Jin J. Org. Lett. 2019; 21: 4259
    • 7f Xia S, Hu K, Lei C, Jin J. Org. Lett. 2020; 22: 1385
    • 7g Zhou WJ, Wu XD, Miao M, Wang ZH, Chen L, Shan SY, Cao GM, Yu DG. Chem. Eur. J. 2020; 26: 15052
    • 7h Kang YC, Treacy SM, Rovis T. ACS Catal. 2021; 11: 7442
    • 7i Huang B, Li Y, Yang C, Xia W. Green Chem. 2020; 22: 2804
    • 7j Luo Z, Meng Y, Gong X, Wu J, Zhang Y, Ye L.-W, Zhu C. Chin. J. Chem. 2020; 38: 173
    • 7k Chatterjee B, Jena S, Chugh V, Weyhermuller T, Werle C. ACS Catal. 2021; 11: 7176
    • 7l Jin Y, Zhang Q, Wang L, Wang X, Meng C, Duan C. Green Chem. 2021; 23: 6984
    • 7m Kang YC, Treacy SM, Rovis T. Synlett 2021; 32: 1767
    • 7n Tang J.-J, Yu X, Wang L, Yamamoto Y, Bao M. Angew. Chem. Int. Ed. 2021; 60: 16426
  • 8 An Q, Wang Z, Chen Y, Zuo Z. J. Am. Chem. Soc. 2020; 142: 6216
  • 9 Ganiu MO, Cleveland AH, Paul JL, Kartika R. Org. Lett. 2019; 21: 5611
  • 10 Fan X, Zhao H, Yu J, Bao X, Zhu C. Org. Chem. Front. 2016; 3: 227
  • 11 Arakawa Y. J. Mol. Struct. 2020; 1199: 126913
  • 12 Domingo V, Prieto C, Castillo A, Silva L, del Moral JF. Q, Barrero AF. Adv. Synth. Catal. 2015; 357: 3359
  • 13 Rono L, Yayla H, Wang D, Armstrong M, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
  • 14 Thurmond J, Butchbach ME. R, Palomo M, Pease B, Singh J. J. Med. Chem. 2008; 51: 449
  • 15 Hirose K, Aksharanandana P, Suzuki M, Wada K, Naemura K, Tobe Y. Heterocycles 2005; 66: 405
  • 16 Benischke AD, Anthore-Dalion L, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 16390
  • 17 Noland WE, Kumar HV, Reddi Y. J. Org. Chem. 2020; 85: 5265
  • 18 Aoki K, Yonekura K, Ikeda Y, Ueno R, Eiji S. Adv. Synth. Catal. 2020; 362: 2200
  • 19 Yamashita Y, Saito Y, Imaizumi T, Kobayashi S. Chem. Sci. 2014; 5: 3958