CC BY-NC-ND 4.0 · Synthesis 2023; 55(03): 417-432
DOI: 10.1055/a-1944-9623
short review

Total Synthesis of Geranyl-Resorcinols Isolated from Mushrooms of Genus Hericium

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 21K05407.


Abstract

This Short Review covers the total synthesis of tetraketide-based meroterpenoids, i.e. geranyl-resorcinols, isolated from the mushrooms of genus Hericium. Some of these compounds are believed to be involved in the unique health-promoting effects of Hericium erinaceus. Herein, more than seventy natural products identified so far have been classified into seven-types based on both assumed biosynthetic pathways and chemical structures, and the successful total syntheses are summarized according to the structural type.

1 Introduction

2 Pioneering Synthetic Study

3 Total Synthesis of Geranyl-Resorcinol with a Geranyl Side Chain (Types 1, 3, and 6)

4 Total Synthesis of Geranyl-Resorcinol with an Oxidized Geranyl-Derived Side Chain (Types 2, 4, and 7)

5 Conclusion



Publication History

Received: 01 August 2022

Accepted after revision: 15 September 2022

Accepted Manuscript online:
15 September 2022

Article published online:
28 November 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Geris R, Simpson TJ. Nat. Prod. Rep. 2009; 26: 1063
  • 2 Ha JW, Kim J, Kim H, Jang W, Kim KH. Nat. Prod. Sci. 2020; 26: 118
  • 3 Zhao M, Tang Y, Xie J, Zhao Z, Cui H. Eur. J. Med. Chem. 2021; 209: 112860
  • 4 Jiang M, Wu Z, Liu L, Chen S. Org. Biomol. Chem. 2021; 19: 1644
  • 5 Kawagishi H. Biosci. Biotechnol. Biochem. 2021; 85: 1
  • 6 Kawagishi H, Zhuang C. Heterocycles 2007; 72: 45
  • 7 Ma B.-J, Shen J.-W, Yu H.-Y, Ruan Y, Wu T.-T, Zhao X. Mycology 2010; 1: 92
  • 8 Friedman M. J. Agric. Food Chem. 2015; 63: 7108
  • 9 Kawagishi H, Zhuang C. Drugs Future 2008; 33: 149
  • 10 Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Phytother. Res. 2009; 23: 367
  • 11 Nagano M, Shimizu K, Kondo R, Hayashi C, Sato D, Kitagawa K, Ohnuki K. Biomed. Res. 2010; 31: 231
  • 12 Wong K.-H, Naidu M, David RP, Bakar R, Sabaratnam V. Int. J. Med. Mushrooms 2012; 14: 427
  • 13 Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Mycol. Prog. 2015; 14: 91
  • 14 Saitsu Y, Nishide A, Kikushima K, Shimizu K, Ohnuki K. Biomed. Res. 2019; 40: 125
  • 15 Vigna L, Morelli F, Agnelli GM, Napolitano F, Ratto D, Occhinegro A, Di Iorio C, Savino E, Girometta C, Brandalise F, Rossi P. Evid.-Based Complement. Alternat. Med . 2019; 2019: 7861297
  • 16 Chong PS, Fung M.-L, Wong KH, Lim LW. Int. J. Mol. Sci. 2020; 21: 163
  • 17 Roda E, Priori EC, Ratto D, De Luca F, Di Iorio C, Angelone P, Locatelli CA, Desiderio A, Goppa L, Savino E, Bottone MG, Rossi P. Int. J. Mol. Sci. 2021; 22: 6379
  • 18 Kawagishi H, Ando M, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Ukai N, Furukawa S. Tetrahedron Lett. 1991; 32: 4561
  • 19 Kawagishi H, Ando M, Shinba K, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Ukai N, Furukawa S. Phytochemistry 1992; 32: 175
  • 20 Phan C.-W, Lee G.-S, Hong S.-L, Wong Y.-T, Brkljača R, Urban S, Abd Malek SN, Sabaratnam V. Food Funct. 2014; 5: 3160
  • 21 Zhang C.-C, Yin X, Cao C.-Y, Wei J, Zhang Q, Gao J.-M. Bioorg. Med. Chem. Lett. 2015; 25: 5078
  • 22 Wittstein K, Rascher M, Rupcic Z, Löwen E, Winter B, Köster RW, Stadler M. J. Nat. Prod. 2016; 79: 2264
  • 23 Ryu SH, Hong SM, Khan Z, Lee SK, Vishwanath M, Turk A, Yeon SW, Jo YH, Lee DH, Lee JK, Hwang BY, Jung J.-K, Kim SY, Lee MK. Bioorg. Med. Chem. Lett. 2021; 31: 127714
  • 24 Ueda K, Tsujimori M, Kodani S, Chiba A, Kubo M, Masuno K, Sekiya A, Nagai K, Kawagishi H. Bioorg. Med. Chem. 2008; 16: 9467
  • 25 Kobayashi S, Hamada Y, Yasumoto T, Hashino Y, Masuyama A, Nagai K. Tetrahedron Lett. 2018; 59: 1733
  • 26 Mori K, Kikuchi H, Obara Y, Iwashita M, Azumi Y, Kinugasa S, Inatomi S, Oshima Y, Nakahata N. Phytomedicine 2010; 17: 1082
  • 27 Kawagishi H, Ando M, Mizuno T. Tetrahedron Lett. 1990; 31: 373
  • 28 Ma B.-J, Ma J.-C, Ruan Y. Chin. J. Nat. Med. 2012; 10: 363
  • 29 Li W, Zhou W, Kim E.-J, Shim SH, Kang HK, Kim YH. Food Chem. 2015; 170: 336
  • 30 Wang X.-L, Xu K.-P, Long H.-P, Zou H, Cao X.-Z, Zhang K, Hu J.-Z, He S.-J, Zhu G.-Z, He X.-A, Xu P.-S, Tan G.-S. Fitoterapia 2016; 111: 58
  • 31 Ashour A, Amen Y, Allam AE, Kudo T, Nagata M, Ohnuki K, Shimizu K. Phytochem. Lett. 2019; 32: 10
  • 32 Li W, Lee SH, Jang HD, Ma JY, Kim YH. Molecules 2017; 22: 108
  • 33 Miyazawa M, Takahashi T, Horibe I, Ishikawa R. Tetrahedron 2012; 68: 2007
  • 34 Wang K, Bao L, Qi Q, Zhao F, Ma K, Pei Y, Liu H. J. Nat. Prod. 2015; 78: 146
  • 35 Wang K, Bao L, Ma K, Liu N, Huang Y, Ren J, Wang W, Liu H. Tetrahedron 2015; 71: 9557
  • 36 Chen B, Han J, Bao L, Wang W, Ma K, Liu H. Planta Med. 2020; 86: 571
  • 37 Lee SK, Ryu SH, Turk A, Yeon SW, Jo YH, Han YK, Hwang BY, Lee KY, Lee MK. J. Ethnopharmacol. 2020; 262: 113197
  • 38 Li W, Sun YN, Zhou W, Shim SH, Kim YH. J. Antibiot. 2014; 67: 727
  • 39 Zheng Z, Chen B, Wang K, Bao L, Wang Z, Xie L, Guo C, Liu H. J. Antibiot. 2020; 73: 646
  • 40 Kimura Y, Nishibe M, Nakajima H, Hamasaki T, Shimada A, Tsuneda A, Shigematsu N. Agric. Biol. Chem. 1991; 55: 2673
  • 41 Chen L, Li Z.-H, Yao J.-N, Peng Y.-L, Huang R, Feng T, Liu J.-K. Fitoterapia 2017; 122: 107
  • 42 Matsuda Y, Abe I. Nat. Prod. Rep. 2016; 33: 26
  • 43 Kim KH, Noh HJ, Choi SU, Lee KR. J. Antibiot. 2012; 65: 575
  • 44 Yaoita Y, Danbara K, Kikuchi M. Chem. Pharm. Bull. 2005; 53: 1202
  • 45 Lin C.-F, Shiao Y.-J, Chen C.-C, Tzeng T.-T, Chen C.-C, Lee L.-Y, Chen W.-P, Shen C.-C. Phytochem. Lett. 2018; 26: 218
  • 46 Arnone A, Cardillo R, Nasini G, de Pava OV. J. Nat. Prod. 1994; 57: 602
  • 47 Ma B.-J, Yu H.-Y, Shen J.-W, Ruan Y, Zhao X, Zhou H, Wu T.-T. J. Antibiot. 2010; 63: 713
  • 48 Omolo JO, Anke H, Sterner O. Phytochemistry 2002; 60: 431
  • 49 Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Biomed. Res. 2011; 32: 67
  • 50 Ratto D, Corana F, Mannucci B, Priori EC, Cobelli F, Roda E, Ferrari B, Occhinegro A, Di Iorio C, De Luca F, Cesaroni V, Girometta C, Bottone MG, Savino E, Kawagishi H, Rossi P. Nutrients 2019; 11: 715
  • 51 Halle MB, Lee W, Yudhistira T, Kim M, Churchill DG. Eur. J. Org. Chem. 2019; 2019: 2315
  • 52 Rama Rao AV, Reddy RG. Tetrahedron Lett. 1992; 33: 4061
  • 53 Alder K, Rickert HF. Justus Liebigs Ann. Chem. 1936; 524: 180
  • 54 Arnold BJ, Mellows SM, Sammes PG. J. Chem. Soc., Perkin 1 1973; 1266
  • 55 Kobayashi S, Ando A, Kuroda H, Ejima S, Masuyama A, Ryu I. Tetrahedron 2011; 67: 9087
  • 56 Kobayashi S, Inoue T, Ando A, Tamanoi H, Ryu I, Masuyama A. J. Org. Chem. 2012; 77: 5819
  • 57 Kobayashi S, Tamanoi H, Hasegawa Y, Segawa Y, Masuyama A. J. Org. Chem. 2014; 79: 5227
  • 58 Stille JK. Angew. Chem. Int. Ed. Engl. 1986; 25: 508
  • 59 Littke AF, Schwarz L, Fu GC. J. Am. Chem. Soc. 2002; 124: 6343
  • 60 Iwabuchi Y. Chem. Pharm. Bull. 2013; 61: 1197
    • 61a There are three reports23,29,61b on the isolation of the originally proposed structure for hericerin 103 (Scheme 4), although two of them did not show the spectroscopic data.23,29 One paper 61b disclosed the NMR data, but the chemical shift assigned to the aromatic proton was reported as δ 6.90, which was unlikely for the structure 103. Therefore, the suspected natural product 103 was omitted from the list of Figure 2. To solve the naming issue, the author of this review suggests giving 103 a new name other than hericerin or isohericerin if discovered in the future.
    • 61b Li W, Bang SH, Lee C, Ma JY, Shim SH, Kim YH. Biochem. Syst. Ecol. 2017; 70: 254
  • 62 Cordes J, Calo F, Anderson K, Pfaffeneder T, Laclef S, White AJ. P, Barrett AG. M. J. Org. Chem. 2012; 77: 652
  • 63 Cao W, Chen P, Tang Y. J. Nat. Prod. 2020; 83: 1701
  • 64 In the original paper by Tang and co-workers, the description ‘Friedel–Crafts alkylation’ was used for the transformation of 115 to 116, which seems inappropriate from a mechanistic point of view. In this review, it was modified as ‘hydroxymethylation’.
  • 65 In the original Scheme (even in the experimental section), the formula ‘Pd(dba)3’ was used in place of ‘Pd2(dba)3’. In this review, the formula was modified to ‘Pd2(dba)3’ because they used it in the optimization studies with (E,E)-farnesyl acetate.
  • 66 Gómez-Prado RA, Miranda LD. Tetrahedron Lett. 2013; 54: 2131
  • 67 Dauben WG, Cogen JM, Behar V. Tetrahedron Lett. 1990; 31: 3241
  • 68 Orito K, Miyazawa M, Nakamura T, Horibata A, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Yamazaki T, Tokuda M. J. Org. Chem. 2006; 71: 5951
  • 69 Mun B, Kim S, Yoon H, Kim KH, Lee Y. J. Org. Chem. 2017; 82: 6349
  • 70 Inoue S, Kim R, Hoshino Y, Honda K. Chem. Commun. 2006; 1974
  • 71 Stork G, Maldonado L. J. Am. Chem. Soc. 1971; 93: 5286
  • 72 Nguyen TB, Sorres J, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2012; 14: 3202
  • 73 Alfaro R, Parra A, Alemán J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
  • 74 Moore CM, Medina CR, Cannamela PC, McIntosh ML, Ferber CJ, Roering AJ, Clark TB. Org. Lett. 2014; 16: 6056
  • 75 Zhu C, Zhang J, Hoye TR. Org. Lett. 2021; 23: 7550
  • 76 Lee M, Ko S, Chang S. J. Am. Chem. Soc. 2000; 122: 12011
  • 77 Rayment EJ, Summerhill N, Anderson EA. J. Org. Chem. 2012; 77: 7052
  • 78 Kobayashi S, Tamura T, Koshishiba M, Yasumoto T, Shimizu S, Kintaka T, Nagai K. J. Org. Chem. 2021; 86: 2602
  • 79 Mashiko T, Nakazato Y, Katsumura Y, Kasamatsu A, Adachi S, Kamo S, Matsuzawa A, Sugita K. Org. Biomol. Chem. 2021; 19: 5127
  • 80 Selander N, Paasch JR, Szabó KJ. J. Am. Chem. Soc. 2011; 133: 409
  • 81 Schmidt B, Krehl S, Kelling A, Schilde U. J. Org. Chem. 2012; 77: 2360
  • 82 Recently, total synthesis of isohericerinol A (49) was reported. Vishwanath M. , Chaudhary CL, Park Y, Viji M, Jung C, Lee K, Sim J, Hong SM, Yoon DH, Lee DH, Lee JK, Lee H, Lee MK, Kim SY, Jung J.-K. J. Org. Chem. 2022; 87: 10836