CC BY-NC-ND 4.0 · Synthesis 2023; 55(01): 1-26
DOI: 10.1055/a-1939-7052
review

Recent Advances in Room-Temperature Direct C–H Arylation Methodologies

Preeti Yadav
,
Nivedha Velmurugan
,
Financial support from the Okinawa Institute of Science and Technology Graduate University is gratefully acknowledged.


Abstract

In recent decades, direct C–H arylation has become a preferred tool for biaryl coupling over traditional cross-coupling methods owing to its operationally simple protocol, inherent atom and step economy, and reduced metallic waste. Several elegant methods have been developed that offer the facile transformation of usually inert Csp2–H bonds into Csp2–Csp2 bonds in a single synthetic operation. Despite many merits, a major drawback to this chemistry comes from the low reactivity of aryl C–H bonds, which often mandate harsh reaction conditions compromising sustainability. Hence, developing reaction protocols that require milder conditions has become an important goal in this area of research. This review article comprehensively highlights the synthesis and mechanistic aspects of direct C–H arylation reactions, which proceed at or below room temperature.

1 Introduction

2 Concepts and Examples

2.1 Transition-Metal-Catalyzed Procedures

2.1.1 Pd Catalysis

2.1.2 Other Metal-Based Procedures

2.1.3 Additive-Free Procedures

2.2 Direct Arylation Polymerization

2.3 Photocatalyzed Procedures

2.3.1 Organometallic C–H-Activation-Based Procedures

2.3.2 Radical-Addition-Based Procedures

2.4 Transition-Metal-Free Procedures

2.4.1 Base-Mediated Procedures

2.4.2 Iodonium- and Diazonium-Salt-Based Procedures

2.5 Electrocatalyzed Procedures

3 Summary and Outlook



Publication History

Received: 30 June 2022

Accepted after revision: 23 August 2022

Accepted Manuscript online:
08 September 2022

Article published online:
20 October 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
  • 2 Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 3 Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
  • 4 Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
  • 5 Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
  • 6 Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
  • 7 Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 8 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
  • 9 Corbet JP, Mignani G. Chem. Rev. 2006; 106: 2651
  • 10 Biffis A, Centomo P, del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
  • 11 Chen X, Engle KM, Wang DH, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 12 Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
  • 13 Segawa Y, Maekawa T, Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
  • 14 Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
  • 15 Okamoto K, Zhang J, Housekeeper JB, Marder SR, Luscombe CK. Macromolecules 2013; 46: 8059
  • 16 Taniguchi Y, Yamaoka Y, Nakata K, Takaki K, Fujiwara Y. Chem. Lett. 1995; 345
  • 17 Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y. Science 2000; 287: 1992
  • 18 Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
  • 19 Bura T, Blaskovits JT, Leclerc M. J. Am. Chem. Soc. 2016; 138: 10056
  • 20 Mayhugh AL, Yadav P, Luscombe CK. J. Am. Chem. Soc. 2022; 144: 6123
  • 21 Grover J, Prakash G, Goswami N, Maiti D. Nat. Commun. 2022; 13: 1085
  • 22 Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
  • 23 Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
  • 24 Tang SY, Guo QX, Fu Y. Eur. J. Chem. 2011; 17: 13866
  • 25 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
  • 26 Campeau LC, Fagnou K. Chem. Commun. 2006; 1253
  • 27 Ackermann L. Chem. Rev. 2011; 111: 1315
  • 28 García-Cuadrado D, de Mendoza P, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2007; 129: 6880
  • 29 Nishikata T, Abela AR, Lipshutz BH. Angew. Chem. Int. Ed. 2010; 49: 781
  • 30 Lebrasseur N, Larrosa I. J. Am. Chem. Soc. 2008; 130: 2926
  • 31 Li R, Jiang L, Lu W. Organometallics 2006; 25: 5973
  • 32 Lane BS, Brown MA, Sames D. J. Am. Chem. Soc. 2005; 127: 8050
  • 33 René O, Fagnou K. Org. Lett. 2010; 12: 2116
  • 34 Tredwell MJ, Gulias M, Gaunt Bremeyer N, Johansson CC. C, Collins BS. L, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 1076
  • 35 Wu Z, Luo F, Chen S, Li Z, Xiang H, Zhou X. Chem. Commun. 2013; 49: 7653
  • 36 Nishikata T, Abela AR, Huang S, Lipshutz BH. Beilstein J. Org. Chem. 2016; 12: 1040
  • 37 Zhu C, Zhang Y, Kan J, Zhao H, Su W. Org. Lett. 2015; 17: 3418
  • 38 Nack WA, Wang B, Wu X, Jiao R, He G, Chen G. Org. Chem. Front. 2016; 3: 561
  • 39 Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
  • 40 Parella R, Gopalakrishnan B, Babu SA. J. Org. Chem. 2013; 78: 11911
  • 41 Whitaker D, Burés J, Larrosa I. J. Am. Chem. Soc. 2016; 138: 8384
  • 42 Colletto C, Panigrahi A, Fernández-Casado J, Larrosa I. J. Am. Chem. Soc. 2018; 140: 9638
  • 43 Lotz MD, Camasso NM, Canty AJ, Sanford MS. Organometallics 2017; 36: 165
  • 44 Lee SY, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 15278
  • 45 Mayhugh AL, Luscombe CK. Org. Lett. 2021; 23: 7079
  • 46 Ball LT, Lloyd-Jones GC, Russell CA. Science 2012; 337: 1644
  • 47 Kuzmina OM, Knochel P. Org. Lett. 2014; 16: 5208
  • 48 Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Nat. Commun. 2017; 8: 564
  • 49 Zhang W, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 7709
  • 50 Jacob N, Zaid Y, Oliveira JC. A, Ackermann L, Wencel-Delord J. J. Am. Chem. Soc. 2022; 144: 798
  • 51 Zhu Y, Bauer M, Ackermann L. Eur. J. Chem. 2015; 21: 9980
  • 52 Reay AJ, Williams TJ, Fairlamb IJ. S. Org. Biomol. Chem. 2015; 13: 8298
  • 53 Reay AJ, Hammarback LA, Bray JT. W, Sheridan T, Turnbull D, Whitwood AC, Fairlamb IJ. S. ACS Catal. 2017; 7: 5174
  • 54 Biajoli AF. P, da Penha ET, Correia CR. D. RSC Adv. 2012; 2: 11930
  • 55 Gemoets HP. L, Kalvet I, Nyuchev AV, Erdmann N, Hessel V, Schoenebeck F, Noël T. Chem. Sci. 2017; 8: 1046
  • 56 Polley A, Varalaxmi K, Jana R. ACS Omega 2018; 3: 14503
  • 57 Dhankhar J, González-Fernández E, Dong CC, Mukhopadhyay TK, Linden A, Čorić I. J. Am. Chem. Soc. 2020; 142: 19040
  • 58 Pankow RM, Thompson BC. Polymer 2020; 207: 122874
  • 59 Xing L, Luscombe CK. J. Mater. Chem. C 2021; 9: 16391
  • 60 Mayhugh AL, Luscombe CK. Beilstein J. Org. Chem. 2020; 16: 384
  • 61 Hu X.-Q, Liu Z.-K, Hou Y.-X, Gao Y. iScience 2020; 23: 101266
  • 62 Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
  • 63 Majek M, von Wangelin AJ. Acc. Chem. Res. 2016; 49: 2316
  • 64 Sahoo B, Hopkinson MN, Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
  • 65 Neufeldt SR, Sanford MS. Adv. Synth. Catal. 2012; 354: 3517
  • 66 Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
  • 67 Liu YX, Xue D, Wang J.-D, Zhao CJ, Zou QZ, Wang C, Xiao J. Synlett 2013; 24: 507
  • 68 Yang F, Koeller J, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 4759
  • 69 Gauchot V, Sutherland DR, Lee AL. Chem. Sci. 2017; 8: 2885
  • 70 Liang L, Xie MS, Wang HX, Niu HY, Qu GR, Guo HM. J. Org. Chem. 2017; 82: 5966
  • 71 Sahoo MK, Rana J, Subaramanian M, Balaraman E. ChemistrySelect 2017; 2: 7565
  • 72 Liang Y, Steinbock R, Yang L, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10625
  • 73 Quattrini MC, Fujii S, Yamada K, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Chem. Commun. 2017; 53: 2335
  • 74 Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
  • 75 Korvorapun K, Struwe J, Kuniyil R, Zangarelli A, Casnati A, Waeterschoot M, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 18103
  • 76 Sagadevan A, Charitou A, Wang F, Ivanova M, Vuagnat M, Greaney MF. Chem. Sci. 2020; 11: 4439
  • 77 Tobisu M, Furukawa T, Chatani N. Chem. Lett. 2013; 42: 1203
  • 78 Xue D, Jia ZH, Zhao CJ, Zhang YY, Wang C, Xiao J. Eur. J. Chem. 2014; 20: 2960
  • 79 Zhang J, Chen J, Zhang X, Lei X. J. Org. Chem. 2014; 79: 10682
  • 80 Natarajan P, Bala A, Mehta SK, Bhasin KK. Tetrahedron 2016; 72: 2521
  • 81 Wang J, Zhao Y, Gao H, Gao GL, Yang C, Xia W. Asian J. Org. Chem. 2017; 6: 1402
  • 82 Hari DP, Schroll P, König B. J. Am. Chem. Soc. 2012; 134: 2958
  • 83 Maity P, Kundu D, Ranu BC. Eur. J. Org. Chem. 2015; 1727
  • 84 Zhang YP, Feng XL, Yang YS, Cao BX. Tetrahedron Lett. 2016; 57: 2298
  • 85 Rybicka-Jasińska K, König B, Gryko D. Eur. J. Org. Chem. 2017; 2104
  • 86 Feng YS, Bu XS, Huang B, Rong C, Dai JJ, Xu J, Xu HJ. Tetrahedron Lett. 2017; 58: 1939
  • 87 Aukland MH, Šiaučiulis M, West A, Perry GJ. P, Procter DJ. Nat. Catal. 2020; 3: 163
  • 88 Sun C, Shi Z. Chem. Rev. 2014; 114: 9219
  • 89 Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
  • 90 Truong T, Daugulis O. J. Am. Chem. Soc. 2011; 133: 4243
  • 91 Truong T, Mesgar M, Le KK. A, Daugulis O. J. Am. Chem. Soc. 2014; 136: 8568
  • 92 Kumar S, Rathore V, Verma A, Prasad ChD, Kumar A, Yadav A, Jana S, Sattar M, Meenakshi, Kumar S. Org. Lett. 2015; 17: 82
  • 93 Li F, Haj Elhussin IE, Li S, Zhou H, Wu J, Tian Y. J. Org. Chem. 2015; 80: 10605
  • 94 Dohi T, Ito M, Morimoto K, Iwata M, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 1301
  • 95 Kita Y, Morimoto K, Ito M, Ogawa C, Goto A, Dohi T. J. Am. Chem. Soc. 2009; 131: 1668
  • 96 Morimoto K, Yamaoka N, Ogawa C, Nakae T, Fujioka H, Dohi T, Kita Y. Org. Lett. 2010; 12: 3804
  • 97 Obushak ND, Lesyuk AI, Gorak YI, Matiichuk VS. Russ. J. Org. Chem. 2009; 45: 1375
  • 98 Crisóstomo FP, Martín T, Carrillo R. Angew. Chem. Int. Ed. 2014; 53: 2181
  • 99 Li Y, Liu W, Kuang C. Chem. Commun. 2014; 50: 7124
  • 100 Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
  • 101 Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
  • 102 Kirste A, Nieger M, Malkowsky IM, Stecker F, Fischer A, Waldvogel SR. Eur. J. Chem. 2009; 15: 2273
  • 103 Kirste A, Hayashi S, Schnakenburg G, Malkowsky IM, Stecker F, Fischer A, Fuchigami T, Waldvogel SR. Eur. J. Chem. 2011; 17: 14164
  • 104 Sun G, Ren S, Zhu X, Huang M, Wan Y. Org. Lett. 2016; 18: 544
  • 105 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877
  • 106 Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727
  • 107 Chupakhin ON, Shchepochkin AV, Charushin VN. Green Chem. 2017; 19: 2931
  • 108 Wang P, Yang Z, Wang Z, Xu C, Huang L, Wang S, Zhang H, Lei A. Angew. Chem. Int. Ed. 2019; 58: 15747