Synthesis 2022; 54(24): 5385-5399
DOI: 10.1055/a-1914-7261
short review

Recent Advances in the Generation of Onium Ylides for Sommelet–Hauser Rearrangements

Eiji Tayama
Our studies were supported by JSPS KAKENHI (Grant Numbers 23750037, 19750029, and 17750034), the Mitsubishi Chemical Corporation Foundation, the Asahi Glass Foundation, the Union Tool Scholarship Foundation, the Foundation for Japanese Chemical Research, and the Uchida Energy Science Promotion Foundation.


Abstract

The Sommelet–Hauser rearrangement of X-benzylic onium ylides (X = heteroatom) is an interesting transformation in organic synthesis. This rearrangement proceeds via dearomative [2,3]-sigmatropic rearrangement, followed by aromatization to form a carbon(sp2)–carbon(sp3) bond. Few advances were made in studies performed around 2000 on this rearrangement because of several competitive side reactions and structural limitations. However, studies performed in the last 15 years on the rearrangement have remarkably expanded the substrate scope and synthetic applications. In this review, the utility of the Sommelet–Hauser rearrangement and recent advances for the generation of onium ylides are described.

1 Introduction

2 Base-Induced Rearrangement

3 Transition-Metal-Catalyzed Rearrangement

4 Light-Mediated Rearrangement

5 Aryne-Induced Rearrangement

6 Conclusions and Outlook



Publication History

Received: 07 July 2022

Accepted after revision: 01 August 2022

Accepted Manuscript online:
01 August 2022

Article published online:
29 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For a review on the Sommelet–Hauser (S–H) rearrangement:
    • 1a Nair VN, Tambar UK. Org. Biomol. Chem. 2022; 20: 3427
    • 1b Tayama E. Chem. Rec. 2015; 15: 789

      For representative reviews on onium ylide rearrangements taken up the S–H rearrangement:
    • 2a Tayama E. Heterocycles 2016; 92: 793
    • 2b Bach R, Harthong S, Lacour J. Nitrogen- and Sulfur-Based Stevens and Related Rearrangements . In Comprehensive Organic Synthesis II, Vol. 3, Chap. 3.20. Knochel P, Molander GA. Elsevier; Oxford: 2014: 992
    • 2c Lahm G, Pacheco JC. O, Opatz T. Synthesis 2014; 46: 2413
    • 2d Clayden J, Donnard M, Lefranc J, Tetlow DJ. Chem. Commun. 2011; 47: 4624
    • 2e Sweeney JB. Chem. Soc. Rev. 2009; 38: 1027
    • 2f Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
    • 2g Kürti L, Czakó B. In Strategic Applications of Named Reactions in Organic Synthesis. Elsevier; Burlington MA: 2005: 422
    • 2h Nitrogen, Oxygen and Sulfur Ylide Chemistry . Clark JS. Oxford University Press; Oxford: 2002
    • 2i Markó IE. The Stevens and Related Rearrangements . In Comprehensive Organic Synthesis, Vol. 3, Chap. 3.10. Trost BM, Fleming I. Pergamon; Oxford: 1991: 913
    • 2j Pine SH. Org. React. 1970; 18: 403

      Theoretical studies:
    • 3a Okada K, Tanaka M, Takagi R. J. Phys. Org. Chem. 2003; 16: 271
    • 3b Heard GL, Yates BF. J. Org. Chem. 1996; 61: 7276
  • 4 Sommelet M. C. R. Hebd. Sceances Acad. Sci. 1937; 205: 56

    • In a previous review (ref. 2i), Ingold and Jessop’s study on the sulfonium ylide in 1930 was presented as the first example of the S–H rearrangement. Hughes and Kuriyan later reported a similar result in 1935. However, no product assignments were made in these reports. The assignments were made by Hilbert and Pinck in 1938. See:
    • 5a Hilbert GE, Pinck LA. J. Am. Chem. Soc. 1938; 60: 494
    • 5b Hughes ED, Kuriyan KI. J. Chem. Soc. 1935; 1609
    • 5c Ingold CK, Jessop JA. J. Chem. Soc. 1930; 713
    • 6a Klein KP, Van Eenam DN, Hauser CR. J. Org. Chem. 1967; 32: 1155
    • 6b Puterbaugh WH, Hauser CR. J. Am. Chem. Soc. 1964; 86: 1108
    • 6c Puterbaugh WH, Hauser CR. J. Am. Chem. Soc. 1964; 86: 1105
    • 6d Jones GC, Beard WQ, Hauser CR. J. Org. Chem. 1963; 28: 199
    • 6e Jones GC, Hauser CR. J. Org. Chem. 1962; 27: 3572
    • 6f Beard WQ. Jr, Hauser CR. J. Org. Chem. 1961; 26: 371
    • 6g Beard WQ. Jr, Hauser CR. J. Org. Chem. 1960; 25: 334
    • 6h Lednicer D, Hauser CR. J. Am. Chem. Soc. 1957; 79: 4449
    • 6i Brasen WR, Hauser CR. Org. Synth. 1954; 34: 61
    • 6j Kantor SW, Hauser CR. J. Am. Chem. Soc. 1951; 73: 4122

      Representative studies:
    • 7a McComas CC, Van Vranken DL. Tetrahedron Lett. 2003; 44: 8203
    • 7b Berger R, Ziller JW, Van Vranken DL. J. Am. Chem. Soc. 1998; 120: 841
    • 7c Hori M, Kataoka T, Shimizu H, Kataoka M, Tomoto A, Kishida M. Tetrahedron Lett. 1983; 24: 3733
    • 7d Hauser CR, Van Eenam DN. J. Org. Chem. 1958; 23: 865
    • 7e Van Eenam DN, Hauser CR. J. Am. Chem. Soc. 1957; 79: 5520
    • 7f Hauser CR, Van Eenam DN. J. Am. Chem. Soc. 1957; 79: 5512

      Examples of base-induced S–H rearrangement of ammonium salts apart from Hauser and co-workers before 2007:
    • 8a Couty F, David O, Drouillat B. Tetrahedron Lett. 2007; 48: 9180
    • 8b Hanessian S, Talbot C, Saravanan P. Synthesis 2006; 723
    • 8c Maeda Y, Sato Y. Chem. Pharm. Bull. 1998; 46: 508
    • 8d Klunder JM. J. Heterocycl. Chem. 1995; 32: 1687
    • 8e Zdrojewski T, Jończyk A. Tetrahedron Lett. 1995; 36: 1355
    • 8f Jończyk A, Lipiak D. J. Org. Chem. 1991; 56: 6933
    • 8g Jończyk A, Lipiak D, Sienkiewicz K. Synlett 1991; 493
    • 8h Weinreb SM, Basha FZ, Hibino S, Khatri NA, Kim D, Pye WE, Wu T.-T. J. Am. Chem. Soc. 1982; 104: 536
    • 8i Sato Y, Yagi Y, Koto M. J. Org. Chem. 1980; 45: 613
    • 8j Bumgardner CL, Hsu H.-B, Afghahi F, Roberts WL, Purrington ST. J. Org. Chem. 1979; 44: 2348
    • 8k Sanders EB, Secor HV, Seeman JI. J. Org. Chem. 1978; 43: 324
    • 8l Kim D, Weinreb SM. J. Org. Chem. 1978; 43: 125
    • 8m Sanders EB, Secor HV, Seeman JI. J. Org. Chem. 1976; 41: 2658
    • 8n Giumanini AG, Trombini C, Lercker G. J. Org. Chem. 1976; 41: 2187
    • 8o Mander LN, Turner JV. J. Org. Chem. 1973; 38: 2915
    • 8p Julia S, Huynh C, Michelot D. Tetrahedron Lett. 1972; 13: 3587
    • 8q Pine SH, Munemo EM, Phillips TR, Bartolini G, Cotton WD, Andrews GC. J. Org. Chem. 1971; 36: 984
    • 8r Archer DA. J. Chem. Soc. C 1971; 1329
    • 8s Grethe G, Lee HL, Uskoković MR. Tetrahedron Lett. 1969; 10: 1937
    • 8t Anderson AG. Jr, Wills MT. J. Org. Chem. 1968; 33: 3046
    • 8u Paul R, Tchelitcheff S. Bull. Chim. Soc. Fr. 1968; 2134
    • 8v Pine SH. Tetrahedron Lett. 1967; 8: 3393
    • 8w Wittig G, Streib H. Justus Liebigs Ann. Chem. 1953; 584: 1
    • 8x Wittig G, Tenhaeff H, Schoch W, Koenig G. Justus Liebigs Ann. Chem. 1951; 572: 1

      Examples of base-induced S–H rearrangement of sulfonium salts:
    • 9a Okada K, Tanaka M. J. Chem. Soc., Perkin Trans. 1 2002; 2704
    • 9b Ishibashi H, Tabata T, Kobayashi T, Takamuro I, Ikeda M. Chem. Pharm. Bull. 1991; 39: 2878
    • 9c Yamamoto M, Kakinuma M, Kohmoto S, Yamada K. Bull. Chem. Soc. Jpn. 1989; 62: 958
    • 9d Lee T.-J, Holtz WJ. Tetrahedron Lett. 1983; 24: 2071
    • 9e Campbell SJ, Darwish D. Can. J. Chem. 1976; 54: 193
    • 9f Hayashi Y, Oda R. Tetrahedron Lett. 1968; 9: 5381
    • 9g See also ref. 8p

      Examples of base-induced S–H rearrangement of in situ generated azasulfonium salts:
    • 10a Alper PB, Nguyen KT. J. Org. Chem. 2003; 68: 2051
    • 10b Karp GM, Condon ME. J. Heterocycl. Chem. 1994; 31: 1513
    • 10c Warpehoski MA, Bradford VS. Tetrahedron Lett. 1986; 27: 2735
    • 10d Gassman PG, Schenk WN. J. Org. Chem. 1977; 42: 3240
    • 10e Gassman PG, Gruetzmacher G, van Bergen TJ. J. Am. Chem. Soc. 1974; 96: 5512
    • 10f Gassman PG, van Bergen TJ. J. Am. Chem. Soc. 1974; 96: 5508
    • 10g Gassman PG, van Bergen TJ, Gilbert DP, Cue BW. Jr. J. Am. Chem. Soc. 1974; 96: 5495
    • 10h Gassman PG, van Bergen TJ, Gruetzmacher G. J. Am. Chem. Soc. 1973; 95: 6508
    • 10i Gassman PG, van Bergen TJ. J. Am. Chem. Soc. 1973; 95: 2718
    • 10j Gassman PG, van Bergen TJ. J. Am. Chem. Soc. 1973; 95: 591
    • 10k Gassman PG, van Bergen TJ. J. Am. Chem. Soc. 1973; 95: 590
    • 10l Gassman PG, Gruetzmacher G. J. Am. Chem. Soc. 1973; 95: 588
  • 11 Reich Collection, Bordwell pK a Table (accessed Aug 18, 2022):. https://organicchemistrydata.org/hansreich/resources/pka/
    • 12a Vedejs E, West FG. Chem. Rev. 1986; 86: 941
    • 12b Vedejs E, Martinez GR. J. Am. Chem. Soc. 1979; 101: 6452
    • 13a Nishimura T, Zhang C, Maeda Y, Shirai N, Ikeda S, Sato Y. Chem. Pharm. Bull. 1999; 47: 267
    • 13b Narita K, Shirai N, Sato Y. J. Org. Chem. 1997; 62: 2544
    • 13c Zhang C, Maeda Y, Shirai N, Sato Y. J. Chem. Soc., Perkin Trans. 1 1997; 25
    • 13d Tanzawa T, Shirai N, Sato Y, Hatano K, Kurono Y. J. Chem. Soc., Perkin Trans. 1 1995; 2845
    • 13e Kawanishi N, Shirai N, Sato Y, Hatano K, Kurono Y. J. Org. Chem. 1995; 60: 4272
    • 13f Maeda Y, Shirai N, Sato Y. J. Chem. Soc., Perkin Trans. 1 1994; 393
    • 13g Sakuragi A, Shirai N, Sato Y, Kurono Y, Hatano K. J. Org. Chem. 1994; 59: 148
    • 13h Sato Y, Shirai N, Machida Y, Ito E, Yasui T, Kurono Y, Hatano K. J. Org. Chem. 1992; 57: 6711
    • 13i Kitano T, Shirai N, Motoi M, Sato Y. J. Chem. Soc., Perkin Trans. 1 1992; 2851
    • 13j Tanaka T, Shirai N, Sugimori J, Sato Y. J. Org. Chem. 1992; 57: 5034
    • 13k Kitano T, Shirai N, Sato Y. Chem. Pharm. Bull. 1992; 40: 768
    • 13l Tanaka T, Shirai N, Sato Y. Chem. Pharm. Bull. 1992; 40: 518
    • 13m Kitano T, Shirai N, Sato Y. Synthesis 1991; 996
    • 13n Sumiya F, Shirai N, Sato Y. Chem. Pharm. Bull. 1991; 39: 36
    • 13o Shirai N, Watanabe Y, Sato Y. J. Org. Chem. 1990; 55: 2767
    • 13p Shirai N, Sumiya F, Sato Y, Hori M. J. Org. Chem. 1989; 54: 836
    • 13q Sugiyama H, Sato Y, Shirai N. Synthesis 1988; 988
    • 13r Shirai N, Sumiya F, Sato Y, Hori M. J. Chem. Soc., Chem. Commun. 1988; 370
    • 13s Shirai N, Sato Y. J. Org. Chem. 1988; 53: 194
    • 13t Nakano M, Sato Y. J. Org. Chem. 1987; 52: 1844
    • 13u Nakano M, Sato Y. J. Chem. Soc., Chem. Commun. 1985; 1684
  • 14 Sato Y, Sakakibara H. J. Organomet. Chem. 1979; 166: 303
  • 15 Maeda Y, Sato Y. J. Org. Chem. 1996; 61: 5188
    • 16a Robert A, Lucas-Thomas M.-T. J. Chem. Soc., Chem. Commun. 1980; 629
    • 16b Robert A, Thomas MT, Foucaud A. J. Chem. Soc., Chem. Commun. 1979; 1048
  • 17 A previous study on the structure of carbonyl-stabilized ammonium ylides: Bailey NA, Hull SE, Kersting GF, Morrison J. Chem. Commun. 1971; 1429
  • 18 Tayama E, Kimura H. Angew. Chem. Int. Ed. 2007; 46: 8869
  • 19 Tayama E, Takedachi K, Iwamoto H, Hasegawa E. Tetrahedron 2010; 66: 9389
    • 20a Tayama E, Sato R, Ito M, Iwamoto H, Hasegawa E. Heterocycles 2013; 87: 381
    • 20b Tayama E, Sato R, Takedachi K, Iwamoto H, Hasegawa E. Tetrahedron 2012; 68: 4710
    • 20c Tayama E, Otoyama S, Tanaka H. Tetrahedron: Asymmetry 2009; 20: 2600
    • 20d Tayama E, Orihara K, Kimura H. Org. Biomol. Chem. 2008; 6: 3673
  • 21 Biswas B, Singleton DA. J. Am. Chem. Soc. 2015; 137: 14244
  • 22 Mita T, Sugawara M, Sato Y. J. Org. Chem. 2016; 81: 5236
  • 23 Casoni G, Myers EL, Aggarwal VK. Synthesis 2016; 48: 3241
  • 24 Colgan AC, Müller-Bunz H, McGarrigle EM. J. Org. Chem. 2016; 81: 11394
  • 25 Tayama E, Watanabe K, Matano Y. Eur. J. Org. Chem. 2016; 3631
  • 26 Tayama E, Watanabe K, Sotome S. Org. Biomol. Chem. 2017; 15: 6668
  • 27 Tayama E, Sotome S. Org. Biomol. Chem. 2018; 16: 4833
  • 28 Tayama E, Hirano K, Baba S. Tetrahedron 2020; 76: 131064
  • 29 Zhang L, Cheng S, Hu H, Xu D. Asian J. Chem. 2019; 31: 3009
  • 30 Previous reports, see refs. 8d, 8h, 8k, 8l, 8m, 8u, and 13f.
  • 31 Tayama E, Shimizu G, Nakao R. Tetrahedron 2022; 111: 132721
  • 32 A representative review: Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
  • 33 Aggarwal VK, Smith HW, Hynd G, Jones RV. H, Fieldhouse R, Spey SE. J. Chem. Soc., Perkin Trans. 1 2000; 3267
  • 34 Liao M, Peng L, Wang J. Org. Lett. 2008; 10: 693
  • 35 Li Y, Shi Y, Huang Z, Wu X, Xu P, Wang J, Zhang Y. Org. Lett. 2011; 13: 1210
  • 36 Xu X, Li C, Xiong M, Tao Z, Pan Y. Chem. Commun. 2017; 53: 6219
  • 37 Yang Z, Guo Y, Koenigs RM. Chem. Commun. 2019; 55: 8410
  • 38 Pan C, Guo W, Gu Z. Chem. Sci. 2018; 9: 5850
  • 39 Previous reports under the fluoride-induced conditions, see ref. 13b, 13e, 13f, 13h, 13k, 13m, 13n, 13o, 13p, and 13r.
  • 40 Jana S, Koenigs RM. Org. Lett. 2019; 21: 3653
  • 41 Lin X, Yang W, Yang W, Liu X, Feng X. Angew. Chem. Int. Ed. 2019; 58: 13492
  • 42 Li S.-S, Wang J. J. Org. Chem. 2020; 85: 12343
  • 43 Li F, He F, Koenigs RM. Synthesis 2019; 51: 4348
  • 44 Yang Z, Guo Y, Koenigs RM. Chem. Eur. J. 2019; 25: 6703
  • 45 A representative review: Roy T, Biju AT. Chem. Commun. 2018; 54: 2580

    • Representative initial studies:
    • 46a Blackburn GM, Ollis WD, Smith C, Sutherland IO. Chem. Commun. 1969; 99
    • 46b Ehrhart G, Seidl G. Chem. Ber. 1964; 97: 1994
    • 46c Hellmann H, Eberle D. Justus Liebigs Ann. Chem. 1963; 662: 188
    • 46d Hellmann H, Scheytt GM. Justus Liebigs Ann. Chem. 1961; 642: 22
    • 46e Hellmann H, Unseld W. Justus Liebigs Ann. Chem. 1960; 631: 82
    • 46f Wittig G, Benz E. Chem. Ber. 1959; 92: 1999
  • 47 Roy T, Gaykar RN, Bhattacharjee S, Biju AT. Chem. Commun. 2019; 55: 3004
  • 48 A representative example: Xu B, Tamber UK. Angew. Chem. Int. Ed. 2017; 56: 9868
  • 49 A representative example: Blid J, Panknin O, Tuzina P, Somfai P. J. Org. Chem. 2007; 72: 1294
  • 50 A representative example: West TH, Daniels DS. B, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2014; 136: 4476
  • 51 Garbi A, Allain L, Chorki F, Ourévitch M, Crousse B, Bonnet-Delpon D, Nakai T, Bégué J.-P. Org. Lett. 2001; 3: 2529