Synlett 2022; 33(17): 1729-1732
DOI: 10.1055/a-1912-2293
letter

A Facile and Efficient One-Pot Procedure for the Synthesis of Novel 2-Substituted 3-Thioxoisoindolin-1-one Derivatives

Fatemeh Gholami
a   School of Chemistry, College of Science, University of Tehran, Tehran, Iran
,
Ali Moazzam
b   Endocrinology and Metabolism Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 11174, Iran
,
b   Endocrinology and Metabolism Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 11174, Iran
,
Mehdi Adib
a   School of Chemistry, College of Science, University of Tehran, Tehran, Iran
,
Samanesadat Hosseini
c   Shahid Beheshti University of Medical Sciences, Tehran, Iran
,
Bagher Larijani
b   Endocrinology and Metabolism Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 11174, Iran
,
b   Endocrinology and Metabolism Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 11174, Iran
› Author Affiliations
We acknowledge the financial support from University of Tehran.


Abstract

In this paper, a novel and efficient method is reported for the synthesis of novel 2-substituted 3-thioxoisoindolin-1-one derivatives. The method is based on the solvent-free reaction of 2-carboxybenzaldehyde with aliphatic amines and sulfur at 100 °C. This reaction is intensely significant, especially in pharmacy applications, due to the facile synthesis of asymmetric thioxoisoindolin-1-one derivatives with phthalimide backbones.

Supporting Information



Publication History

Received: 17 May 2022

Accepted after revision: 28 July 2022

Accepted Manuscript online:
28 July 2022

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Sharma U, Kumar P, Kumar N, Singh B. Mini-Rev. Med. Chem. 2010; 10: 678
    • 1b Abdel-Hafez AA. Arch Pharm. Res. 2004; 27: 495
    • 1c Meng XB, Han D, Zhang S.-N, Guo W, Cui JR, Li Z.-J. Carbohydr. Res. 2007; 342: 1169
    • 1d Tripathi KN, Belal M, Singh RP. J. Org. Chem. 2019; 85: 1193
    • 2a Tehrani MB, Emani P, Rezaei Z, Khoshneviszadeh M, Ebrahimi M, Edraki N, Mahdavi M, Larijani B, Ranjbar S, Foroumadi A. J. Mol. Struct. 2019; 1176: 86
    • 2b Cui X, Surkus A.-E, Junge K, Topf C, Radnik J, Kreyenschulte C, Beller M. Nat. Commun. 2016; 7: 11326
    • 2c Moriyama K, Ishida K, Togo H. Chem. Commun. 2012; 48: 8574
  • 3 Miyachi H, Azuma A, Hioki E, Iwasaki S, Kobayashi Y, Hashimoto Y. Biochem. Biophys. Res. Commun. 1996; 224: 426
    • 4a Reist M, Carrupt P-A, Francotte E, Testa B. Chem. Res. Toxicol. 1998; 11: 1521
    • 4b Narode H, Gayke M, Eppa G, Yadav JS. Org. Process Res. Dev. 2021; 25: 1512
    • 5a Makonkawkeyoon S, Limson-Pobre RN. R, Moreira AL, Schauf V, Kaplan G. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 5974
    • 5b Tseng S, Pak G, Washenik K, Pomeranz MK, Shupack JL. J. Am. Acad. Dermatol. 1996; 35: 969
    • 6a Miyachi H, Azuma A, Kitamoto T, Hayashi K, Kato S, Koga M, Sato B, Hashimoto Y. Bioorg. Med. Chem. Lett. 1997; 7: 1483
    • 6b Majumder S. Curr. Top. Med. Chem. 2012; 12: 1456
  • 7 Panek D, Więckowska A, Wichur T, Bajda M, Godyń J, Jończyk J, Mika K, Janockova J, Soukup O, Knez D. Eur. J. Med. Chem. 2017; 125: 676
  • 8 Huang J, Chen B, Zhou B, Han Y. New J. Chem. 2018; 42: 1181
  • 9 Zhu X, Giordano T, Yu Q-S, Holloway HW, Perry TA, Lahiri DK, Brossi A, Greig NH. J. Med. Chem. 2003; 46: 5222
    • 10a Steliou K, Mrani M. J. Am. Chem. Soc. 1982; 104: 3104
    • 10b Degl’Innocenti A, Capperucci A, Mordinic A, Reginato G, Ricci A, Cerreta F. Tetrahedron Lett. 1993; 34: 873
    • 10c Metzner P. Pure Appl. Chem. 1996; 68: 863
  • 11 Gayen KS, Chatterjee N. Asian. J. Org. Chem. 2020; 9: 508
  • 12 Scerba MT, Siegler MA, Greig NH. Synlett 2021; 32: 917
  • 13 Kaboudin B, Yarahmadi V, Kato J.-y, Yokomatsu T. RSC Adv. 2013; 3: 6435
  • 14 Yadav AK, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2012; 53: 7113
  • 15 Gholami F, Moazzam A, Hosseini S, Larijani B, Adib M, Mahdavi M. Tetrahedron Lett. 2022; 100: 153859
  • 16 Kuribara T, Nakajima M, Nemoto T. Org. Lett. 2020; 22: 2235
  • 17 Nguyen TB, Ermolenko L, Dean WA, Al-Mourabit A. Org. Lett. 2012; 14: 5948
  • 18 Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 3887
  • 19 Nguyen TB. Adv. Synth. Catal. 2020; 362: 3448
  • 20 Nguyen TB. Adv. Synth. Catal. 2017; 359: 1066
  • 21 Nguyen TB. Asian J. Org. Chem. 2017; 6: 477
  • 22 Tang L, Matuska JH, Huang Y-H, He Y-H, Guan Z. ChemSusChem 2019; 12: 2570
  • 23 Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
  • 24 You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
  • 25 Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
  • 26 Reddy RS, Zheng S, Lagishetti C, Youa H, He Y. RSC Adv. 2016; 6: 68199
  • 27 General Procedure for the Synthesis of Compound 3a–k A mixture of 2-formylbenzoic acid (1, 1 mmol), aliphatic amine derivatives (2a, 1.2 equiv.), and S8 (2 equiv.) were added, and the mixture was stirred at 100 °C under solvent-free conditions for 3 h. When the reaction was completed (TLC), the mixture was cooled at r.t., and the residue was purified with column chromatography from n-hexane/EtOAc (3:1) to afford the compounds 3ak in 57–86%. 2-Isopropyl-3-thioxoisoindolin-1-one (3a) Yellow oil, yield 68%. 1H NMR (400 MHz, DMSO-d 6): δ = 7.91–7.85 (m, 1 H), 7.84–7.80 (m, 2 H), 7.80–7.76 (m, 1 H), 5.05 (p, J = 6.9 Hz, 1 H), 1.48 (d, J = 7.0 Hz, 6 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 197.34, 169.70, 136.76, 135.01, 134.39, 127.45, 124.33, 123.02, 46.49, 19.86 ppm. Anal. Calcd for C11H11NOS: C, 64.36; H, 5.40; N, 6.82; S, 15.62. Found: C, 64.66; H, 5.21; N, 6.98; S, 15.37. MS (70 eV): m/z = 205 [M+].